

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Рубцовский индустриальный институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный технический университет им. И.И. Ползунова» (РИИ АлтГТУ)

Е.В. Никитенко

ЛИНЕЙНАЯ АЛГЕБРА И ТЕОРИЯ МАТРИЦ

Методические указания по выполнению контрольной работы

для студентов всех форм обучения направления «Информатика и вычислительная техника»

Никитенко Е.В. Линейная алгебра и теория матриц: методические указания по выполнению контрольной работы для студентов всех форм обучения направления «Информатика и вычислительная техника» / Е.В. Никитенко; Рубцовский индустриальный институт. – Рубцовск: РИИ, 2021. – 17 с.

Настоящие указания содержат необходимые теоретические сведения и подробное решение одного варианта заданий. Приведен список из 30 вариантов контрольных работ.

Рассмотрено и одобрено на заседании кафедры ПМ Протокол № 8 от 26.02.2021.

Рецензент: к.ф.-м.н., доцент В.В. Борисовский

СОДЕРЖАНИЕ

Введение
1. Требования к оформлению контрольной работы
2. Теоретические сведения
2.1 Матрица линейного отображения 6
2.2 Матрицы линейного оператора в различных базисах7
2.3 Собственные числа и векторы линейного оператора7
2.4 Понятие сопряженного и самосопряженного оператора9
3. Образец выполнения контрольной работы
4. Комплект заданий для выполнения контрольной работы
Список литературы
Приложение А

Введение

В соответствии с учебным планом при изучении дисциплины «Линейная алгебра и теория матриц» студенты должны выполнить контрольную работу. Выполнение контрольной работы необходимо для систематизации и закрепления ранее полученных теоретических знаний и практических умений, а также способствует формированию умения работать с дополнительной и справочной литературой.

Методические указания предназначены для студентов всех форм обучения по направлению подготовки бакалавров 09.03.01 «Информатика и вычислительная техника», изучающих дисциплину «Линейная алгебра и теория матриц».

Настоящие указания содержат необходимые теоретические сведения и подробное решение одного варианта заданий.

1 Требования к оформлению контрольной работы

Контрольная работы выполняется в отдельной тетради или на листах формата A4, скрепленных в папке-скоросшивателе. На обложку тетради приклеивается или в качестве верхнего листа в папке-скоросшивателе прикладывается *титульный лист*, оформленный в соответствии с установленной формой (Приложение A). На титульном листе студентом указываются только свои ФИО, номер группы и номер варианта. Формулировка задания перед решением полностью переписывается.

Номер варианта контрольной работы соответствует порядковому номеру студента в списке журнала группы.

Работа должна быть аккуратно оформлена и представлена для проверки не менее чем за 2 недели до начала сессии. Контрольные работы, не соответствующие номеру варианта не проверяются.

2 Теоретические сведения

2.1 Матрица линейного отображения

Определение. Пусть V и W — линейные пространства размерностей n и m соответственно, заданные над одним и тем же полем F. Отображение $A:V \to W$ называется линейным отображением, если для произвольных $x,y \in V$ и произвольного $\lambda \in F$ имеют место следующие равенства:

- 1) A(x + y) = A(x) + A(y) (аддитивность);
- 2) $A(\lambda x) = \lambda A(x)$ (однородность).

Определение. Линейное отображение $A: V \to V$ называется линейным преобразованием пространства V или линейным оператором.

Расмотрим линейное отображение $A: V \to W$. Зафиксируем какой-нибудь базис $\{e_1, ..., e_n\}$ в V и какой-нибудь базис $\{f_1, ..., f_m\}$ в W. Возьмем произвольный вектор $x \in V$ и разложим его по базису:

$$x = x_1 e_1 + \dots + x_n e_n.$$

В силу линейности отображения А имеем:

$$\mathbb{A}(x) = \mathbb{A}(x_1 e_1 + \dots + x_n e_n) = x_1 \mathbb{A}(e_1) + \dots + x_n \mathbb{A}(e_n).$$

Таким образом, отображение \mathbb{A} полностью определяется своим действием на базисных векторах $\{e_1, ..., e_n\}$. Разложим образы базисных векторов по базису $\{f_1, ..., f_m\}$:

$$A(e_j) = a_{1j}f_1 + \dots + a_{mj}f_m, \quad j = 1, \dots, n.$$

Имеем:

$$A(x_1e_1 + \dots + x_ne_n) = (a_{11}x_1 + \dots + a_{1n}x_n)f_1 + \dots + (a_{m1}x_1 + \dots + a_{mn}x_n)f_m$$
$$= y_1f_1 + \dots + y_mf_m = y \in W.$$

Обозначим: $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ и $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$. Координаты образа $y \in W$ вектора $x \in V$

при линейном отображении $\mathbb A$ выражаются через координаты прообраза x в матричной записи следующим образом:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 или $Y = A_{ef}X$.

Определение. Матрица $A_{ef} = (a_{ij})_{m \times n}$ — называется матрицей линейного отображения $A: V \longrightarrow W$ относительно базисов $\{e_1, \dots, e_n\}$ и $\{f_1, \dots, f_m\}$ (или в паре базисов).

2.2 Матрицы линейного оператора в различных базисах

Рассмотрим линейное преобразование $y = \mathbb{A}x$. Пусть A — матрица оператора \mathbb{A} в базисе $\{e_1, ..., e_n\}$ пространства V. В матричном виде имеем:

$$Y = AX. (1)$$

Рассмотрим новый базис $\{e'_1, ..., e'_n\}$, и пусть $S = (s_{ij})$ - матрица перехода от старого базиса к новому. Тогда координаты векторов x и y в старом и новом базисах связаны соотношениями:

$$X = SX' \text{ if } Y = SY'. \tag{2}$$

Подставляя X и Y из (2) в формулу (1), получим:

$$SY' = ASX'$$
 или $Y' = S^{-1}ASX'$.

Обозначив $A' = S^{-1}AS$, получим Y' = A'X' — линейное преобразование, соответствующее оператору $\mathbb A$ в новом базисе.

Определение. Матрицы A и $A' = S^{-1}AS$ называются *подобными*. Они описывают действие одного и того же оператора $\mathbb A$ в разных базисах.

Теорема. Свойства подобных матриц:

- 1) равенство рангов;
- 2) равенство определителей;
- 3) равенство характеристических полиномов и собственных значений.

2.3 Собственные числа и векторы линейного оператора

Определение. Ненулевой вектор $v \in V$ называется *собственным вектором* линейного оператора \mathbb{A} , если найдется такое число λ , что будет выполняться равенство:

$$\mathbb{A}v = \lambda v$$
.

При этом само число λ называется собственным значением (числом) линейного оператора \mathbb{A} , соответствующим вектору v.

Замечание. В вещественном векторном пространстве V не у всякого оператора есть собственные векторы.

Теорема. Любой линейный оператор \mathbb{A} , действующий в комплексном векторном пространстве V, имеет собственные векторы.

Пусть линейный оператор $\mathbb A$ в базисе $\{e_1,\dots,e_n\}$ задан матрицей

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix},$$

и пусть матрица-столбец $X = (x_1 \ x_2 \dots x_n)^T$ соответствует вектору $x = x_1 e_1 + \dots + x_n e_n.$

Тогда из определения $AX = \lambda X = \lambda EX \Rightarrow (A - \lambda E)X = O$. Эта система имеет ненулевое решение, если

$$\det(A - \lambda E) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \cdots & \cdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0.$$
 (3)

Определение. Уравнение (3) называется *характеристическим уравнением* матрицы A, а его левая часть — *характеристическим многочленом* матрицы A. Понятно, что корни характеристического уравнения и только они являются собственными числами оператора A.

Определение. Множество всех характеристических чисел матрицы A называется ее спектром и обозначается через $\sigma(A)$.

Так как матрицы оператора $\mathbb A$ в различных базисах подобны, то характеристический многочлен матрицы A оператора $\mathbb A$ и его корни не зависят от выбора базиса в пространстве V. Они являются инвариантами оператора.

Определение. Пусть $x = x_1 e_1 + \dots + x_n e_n$ – собственный вектор оператора \mathbb{A} с собственным числом λ . Тогда его координаты удовлетворяют следующей системе:

$$\begin{cases} (a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0 \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = 0. \end{cases}$$

Теорема. Если матрица линейного оператора **A** является симметричной, то:

- 1) все собственные значения являются действительными числами;
- 2) собственные векторы, соответствующие различным собственным значениям, ортогональны;

3) в базисе из единичных собственных векторов матрица A линейного оператора $\mathbb A$ является диагональной, причем элементами главной диагонали являются его собственные числа.

2.4 Понятие сопряженного и самосопряженного оператора

Определение. Оператор $\mathbb{A}^*: V \to V$ называется *сопряженным* к линейному оператору \mathbb{A} , если для любых векторов $x, y \in V$ выполняется равенство

$$(\mathbb{A}x, y) = (x, \mathbb{A}^*y).$$

Теорема. У любого линейного оператора \mathbb{A} евклидова пространства V существует единственный сопряженный оператор \mathbb{A}^* , причем его матрица в базисе $\{e_k\}_{k=1}^n$ определяется по матрице \mathbb{A} оператора \mathbb{A} формулой

$$A^* = \Gamma^{-1} \cdot A^{\mathrm{T}} \cdot \Gamma.$$

Если базис $\{e_k\}$ является ортонормированным, то матрица Грама единичная и вышеприведенная формула принимает более простой вид

$$A^* = A^T$$
.

Теорема. Сопряженный оператор \mathbb{A}^* обладает следующими свойствами:

- 1) А* сам является линейным оператором;
- $2) (\mathbb{A} + \mathbb{B})^* = \mathbb{A}^* + \mathbb{B}^*;$
- 3) $(\alpha \mathbb{A})^* = \alpha \mathbb{A}^*$;
- $4) (\mathbb{AB})^* = \mathbb{B}^* \mathbb{A}^*;$
- 5) $(A^*)^* = A$.

Определение. Линейный оператор $A: V \to V$ называется *самосопряженным* или *симметричным* если справедливо равенство

$$\mathbb{A}^* = \mathbb{A}$$
.

В ортонормированном базисе $\{e_k\}$ матрица самосопряженного оператора симметрична.

3. Образец выполнения контрольной работы

Задание 1. Используя соответствующий математический аппарат теории линейных операторов, найти собственные значения и собственные векторы оператора А, заданного в некотором базисе матрицей:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 5 \end{pmatrix}$$

Записать матрицу оператора А в базисе из собственных векторов и указать матрицу перехода к этому базису.

Решение. Запишем характеристическое уравнение:

$$\det(A - \lambda E) = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & 2 & 5 - \lambda \end{vmatrix} =$$

$$= -\lambda^3 + 8\lambda^2 - 13\lambda + 6 = -(\lambda - 1)^2(\lambda - 6) = 0.$$

Его корни: $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 6$ являются собственными числами оператора. Найдем соответствующие собственные векторы.

Так как собственное значение $\lambda = 1$ имеет алгебраическую кратность равную двум, то найдем пару взаимно ортогональных собственных векторов

$$v_1 = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
 и $v_2 = \begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \end{pmatrix}$, координаты которых удовлетворяют следующей

системе уравнений:

$$\begin{cases} 0\alpha + 0\beta + 0\gamma = 0, \\ 0\alpha + 1\beta + 2\gamma = 0, \\ 0\alpha + 2\beta + 4\gamma = 0. \end{cases}$$

Решив систему, получим: $\beta = -2\gamma$ и α — произвольное. Выделим два какихнибудь взаимно ортогональных вектора (т.е. $(v_1, v_2) = 0$), например:

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
и $v_2 = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$.

При $\lambda_3 = 6$ координаты собственного вектора $v_3 = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ должны удовлетворять системе уравнений:

$$\begin{cases}
-5\alpha + 0\beta + 0\gamma = 0, \\
0\alpha - 4\beta + 2\gamma = 0, \\
0\alpha + 2\beta - 1\gamma = 0.
\end{cases}$$

Решив систему, получим: $\alpha = 0$ и $\gamma = 2\beta$. Полагая, например, $\beta = 1$, получим

$$v_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
.

Таким образом, матрица A' линейного оператора $\mathbb A$ в базисе из собственных векторов и матрица перехода S к этому базису имеют следующий вид:

$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Выполним проверку, используя формулу $A' = S^{-1}AS$:

$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2/5 & -1/5 \\ 0 & 1/5 & 2/5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{pmatrix}.$$

Задание 2. Используя соответствующий математический аппарат теории линейных операторов, найти матрицу сопряженного оператора \mathbb{A}^* в не ортонормированном базисе $\{e_1, e_2, e_3\}$, если матрица оператора \mathbb{A} и матрица Грама имеют следующий вид:

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \ \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

Решение. Для начала вычислим обратную матрицу Γ^{-1} по формуле:

$$\Gamma^{-1} = rac{1}{\mid \Gamma \mid} egin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \ A_{21} & A_{22} & \cdots & A_{2n} \ \cdots & \cdots & \cdots & \cdots \ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}^T,$$

где A_{ij} – алгебраическое дополнение элемента a_{ij} матрицы Г. Получим

$$\Gamma^{-1} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

Матрица сопряженного оператора \mathbb{A}^* в базисе $\{e_1, e_2, e_3\}$ имеет вид

$$A^* = \Gamma^{-1} \cdot A^{\mathsf{T}} \cdot \Gamma = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 2 & 9 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

4. Комплект заданий для выполнения контрольной работы

Задание 1. Используя соответствующий математический аппарат теории линейных операторов, найти собственные значения и собственные векторы оператора \mathbb{A} , заданного в некотором базисе матрицей A. Записать матрицу оператора \mathbb{A} в базисе из собственных векторов и указать матрицу перехода к этому базису.

1.1
$$A = \begin{pmatrix} -5 & -2 & -2 \\ 10 & 4 & 2 \\ 2 & 1 & 3 \end{pmatrix}$$
1.12 $A = \begin{pmatrix} 5 & 1 & -1 \\ 1 & 3 & 1 \\ 7 & 3 & 1 \end{pmatrix}$
1.2 $A = \begin{pmatrix} -1 & 2 & -4 \\ -8 & -3 & 2 \\ -2 & -4 & 6 \end{pmatrix}$
1.13 $A = \begin{pmatrix} 1 & -1 & -1 \\ -2 & 2 & 1 \\ 4 & 2 & 3 \end{pmatrix}$
1.3 $A = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 4 & 2 \\ -2 & 2 & 1 \end{pmatrix}$
1.4 $A = \begin{pmatrix} 5 & 2 & 2 \\ 1 & 6 & 2 \\ -5 & -7 & -3 \end{pmatrix}$
1.5 $A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$
1.15 $A = \begin{pmatrix} -1 & 2 & -3 \\ -1 & 4 & -1 \\ 4 & -2 & 6 \end{pmatrix}$
1.16 $A = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix}$
1.17 $A = \begin{pmatrix} 1 & 2 & -1 \\ 9 & -6 & 3 \\ 20 & -20 & 10 \end{pmatrix}$
1.17 $A = \begin{pmatrix} 1 & 4 & 4 \\ 1 & 3 & -1 \\ -3 & 4 & 8 \end{pmatrix}$
1.18 $A = \begin{pmatrix} 8 & -2 & 2 \\ 8 & -3 & 4 \\ -2 & -2 & 3 \end{pmatrix}$
1.19 $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & -3 & 3 \end{pmatrix}$
1.10 $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 2 & 1 & 5 \end{pmatrix}$
1.11 $A = \begin{pmatrix} -2 & 2 & -1 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$
1.21 $A = \begin{pmatrix} 2 & -1 & 3 \\ -2 & 1 & 5 \\ -1 & -1 & 6 \end{pmatrix}$
1.11 $A = \begin{pmatrix} -2 & 2 & -1 \\ -6 & 2 & -2 \\ 6 & 2 & 2 & 1 \end{pmatrix}$
1.22 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ 2 & 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$

$$\mathbf{1.23} \, A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

$$\mathbf{1.24} \, A = \begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}$$

$$\mathbf{1.25} \, A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 2 & -1 & 0 \end{pmatrix}$$

$$\mathbf{1.29} \, A = \begin{pmatrix} 5 & 1 & -1 \\ 1 & 3 & 1 \\ 7 & 3 & 1 \end{pmatrix}$$

$$\mathbf{1.26} \, A = \begin{pmatrix} -2 & 6 & -4 \\ 9 & -5 & 6 \\ 15 & -18 & 15 \end{pmatrix}$$

$$\mathbf{1.30} \, A = \begin{pmatrix} 1 & -1 & -1 \\ -2 & 2 & 1 \\ 4 & 2 & 3 \end{pmatrix}$$

Задание 2. Используя соответствующий математический аппарат теории линейных операторов, найти матрицу сопряженного оператора \mathbb{A}^* в не ортонормированном базисе $\{e_1, e_2, e_3\}$, если матрица оператора \mathbb{A} и матрица Грама имеют следующий вид:

2.1
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
2.9 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}$
2.10 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 2 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.11 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 2 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.12 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.12 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$
2.12 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.13 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.14 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.15 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.16 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.16 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$
2.16 $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$

$$\mathbf{2.17} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.24} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.18} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 3 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.18} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.19} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

$$\mathbf{2.26} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.20} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.21} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.22} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.22} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.23} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.23} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$\mathbf{2.23} \ \mathsf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}, \Gamma = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

Список литературы

- 1. Карчевский, Е. М. Лекции по линейной алгебре и аналитической геометрии : учебное пособие / Е. М. Карчевский, М. М. Карчевский. 2-е изд., перераб. и доп. Санкт-Петербург : Лань, 2018. 424 с.
- 2. Сборник задач по аналитической геометрии и линейной алгебре: учебное пособие / Л. А. Беклемишева, Д. В. Беклемишев, А. Ю. Петрович, И. А. Чубаров; под редакцией Д. В. Беклемишева. 7-е изд., стер. Санкт-Петербург: Лань, 2019. 496 с.
- 3. Сборник задач по алгебре / И.В. Аржанцев и др. Под ред. А.И. Кострикина: Учеб. пособ. для вузов. Новое издание, исправленное. М.: МЦНМО, 2009.-408 с.

ПРИЛОЖЕНИЕ А МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Рубцовский индустриальный институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный технический университет им. И.И. Ползунова» (РИИ АлтГТУ)

Кафедра Прикладная математика

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: «Линейная алгебра и теория матриц»		
Вариант №		
	Выполнил:	
	студент группы ИВТ	
	Проверил:	
	доцент кафедры	

Никитенко Е.В.

Евгений Витальевич Никитенко

ЛИНЕЙНАЯ АЛГЕБРА И ТЕОРИЯ МАТРИЦ

Методические указания по выполнению контрольной работы для студентов всех форм обучения направления «Информатика и вычислительная техника»

Подписано к печати 30.04.21. Формат 60х84 /16. Усл. печ. л. 1,06. Тираж 25 экз. Заказ 161610. Рег. № 63.

Отпечатано в ИТО Рубцовского индустриального института 658207, Рубцовск, ул. Тракторная, 2/6.