

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Рубцовский индустриальный институт (филиал)

федерального государственного бюджетного образовательного

учреждения высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова» (РИИ АлтГТУ)

МИХАЙЛЕНКО О.А.

МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ, ВКЛЮЧАЯ СВАРКУ

Методические указания к выполнению лабораторных работ для студентов направления 08.03.01 "Строительство" очного и заочного обучения

УДК 624

Михайленко О.А. Методические указания к выполнению лабораторных работ по дисциплине "Металлические конструкции, включая сварку" для студентов направления 08.03.01 "Строительство" очного и заочного обучения, Рубцовск, 2019, 26 с.

Содержат указания по выполнению студентами направления подготовки «Строительство» лабораторных работ по дисциплине «Металлические конструкции, включая сварку».

Рассмотрены и одобрены на заседании каф. СиМ РИИ АлтГТУ Протокол № 7 от 07.06.2019

Рецензент: доцент каф. СиМ

к.т.н., доцент А.А. Денисенко

© Рубцовский индустриальный институт, 2019

Содержание:

Гема 1. Проведение испытаний по определению механических
характеристик стальных образцов
Гема № 2. Проведение сварочных работ10
Гема № 3. Исследование работы соединений металлических конструкций 14
Гема № 4. Исследование напряженно-деформированного состояния стальной балки
Гема № 5. Исследование напряженно-деформированного состояния стальной конструкции25

Лабораторные работы

$N_{\underline{0}}$	Название лабораторных и расчетно-графических работ и их содержание
темы	
1	Проведение испытаний по определению механических характеристик стальных
	образцов
2	Проведение сварочных работ
3	Исследование работы соединений металлических конструкций
4	Исследование напряженно-деформированного состояния стальной балки
5	Исследование напряженно-деформированного состояния стальной конструкции

Тема 1. Проведение испытаний по определению механических характеристик стальных образцов

ОПРЕДЕЛЕНИЕ МОДУЛЯ УПРУГОСТИ СТАЛЬНОГО ОБРАЗЦА (с использованием разрывной машины или испытательного стенда и метода электрического тензометрирования)

ЦЕЛЬ РАБОТЫ

Экспериментальным путем определить модуль упругости стали и сравнить полученное значение с табличным.

ОБОРУДОВАНИЕ

- 1. Разрывная машина марки (или испытательный стенд с возможностью подвешивания к образцу грузов)
- 2. Стальной образец
- 3. Индикатор часового типа (или тензорезисторы, микропроцессорная тензометрическая система)
- 4. Штангенциркуль, линейка (при использовании метода электрического тензометрирования, не нужны)

ХАРАКТЕРИСТИКА ОБРАЗЦА

Материал: сталь Ст 3

Рабочая длина: $\ell =$ ____ мм

Поперечное сечение: круг диаметром d = 10 мм

Площадь поперечного сечения образца:
$$A = \frac{\pi d^2}{4} = \frac{\pi \cdot 10^2}{4} \approx 78,5$$
 мм²

ПОЯСНЕНИЯ К РАБОТЕ

При растяжении или сжатии образца до предела пропорциональности материал подчиняется закону Гука. Это значит, что относительная деформация є, возникающая в образце под действием нагрузки, прямо пропорциональна нормальным напряжениям от.

$$\sigma = E \cdot \epsilon$$
, (1)

где σ – нормальные напряжения, возникающие в поперечных сечениях образца под нагрузкой;

ε – величина относительной продольной деформации;

Е – модуль продольной упругости 1-го рода, или модуль Юнга.

Нормальные напряжения σ при растяжении или сжатии определяются выражением

$$\sigma = \frac{F}{A}$$
, (2)

где F – величина продольной нагрузки,

А – площадь поперечного сечения образца.

Если силу F измерять в ньютонах (H), а площадь сечения в мм², величина

напряжения определится в $\frac{11}{MM^2}$, или в мегапаскалях (МПа).

Величина относительной продольной деформации ϵ равна отношению абсолютной деформации $\Delta \ell$ к первоначальной длине образца ℓ ,

$$\varepsilon = \frac{\Delta \ell}{\ell}$$
 (3)

Поскольку величина є безразмерная, модуль продольной упругости

измеряется в тех же величинах, что и напряжение σ , т.е. в $\frac{\pi}{MM^2}$ или в МПа.

Подставим в формулу (1) закона Гука выражения (2) и (3). Получим:

$$\frac{F}{A} = E \frac{\Delta \ell}{\ell}$$

Отсюда значение модуля продольной упругости:

$$E = \frac{F \cdot \ell}{A \cdot \Delta \ell} \tag{4}$$

Выражение (4) является основным для опытного нахождения модуля продольной упругости Е.

ЗАДАНИЕ

При подготовке к лабораторной работе студент должен:

- знать устройство и принцип работы разрывной машины;
- знать основные виды нагружения бруса;
- знать, какой вид нагружения называется растяжением (сжатием);
- знать закон Гука, зависимости и формулы для расчета напряжений и перемещений;
- знать определение модуля упругости материала и единицы его измерения;
 - уметь определять по диаграмме растяжения предел пропорциональности;
- уметь выполнять расчеты по определению модуля упругости стали;
- ответить на контрольные вопросы;
- правильно оформить отчет по лабораторной работе.

РАБОТА В ЛАБОРАТОРИИ

В работе важно нагружать образец таким образом, чтобы возникающие в его поперечных сечениях нормальные напряжения σ не превысили предела пропорциональности $\sigma_{\Pi II}$. Для стали Ст 3, из которой изготовлен образец,

$$\sigma_{\Pi II} = 200 \text{ M}\Pi a.$$

Это значит, что наибольшая нагрузка на образец диаметром d=10 мм и площадью сечения A=78,5 мм² не должна превышать

$$F_{\text{max}} \le A \cdot \sigma_{\text{MM}} = 78.5 \cdot 200 = 15700 \text{ H } (\approx 1570 \text{ kGc})$$

Установим наибольшую нагрузку на образец, равную

$$F_{\text{max}} = 15500 \text{ H}$$
, или 1550 кГс.

Поскольку сталь является материалом изотропным, слова «модуль продольной упругости» заменим на «модуль упругости», так как для стали модуль продольной и поперечной упругости являются одинаковыми.

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

- 1. Установить образец в разрывную машину УММ 5. Стрелки указателя нагрузки и индикатора часового типа установить на «0» (рис.1а).
- 2. Включить машину и, постепенно увеличивая нагрузку на образец, довести ее до значения, равного 15500 H (1550 к Γ c).
- 3. Остановить нагрузку и снять показание индикатора (рис. 1б).
- 4. Определить значение модуля упругости стали по формуле (4):

$$E = \frac{F \cdot \ell}{A \cdot \Lambda \ell}$$

5. Сравнить полученное значение Е с табличным значением модуля упругости стали, равным

$$E_{CT} = (1.9...2,1) \cdot 10^{5} \text{ MHa}$$

6. Сделать выводы.

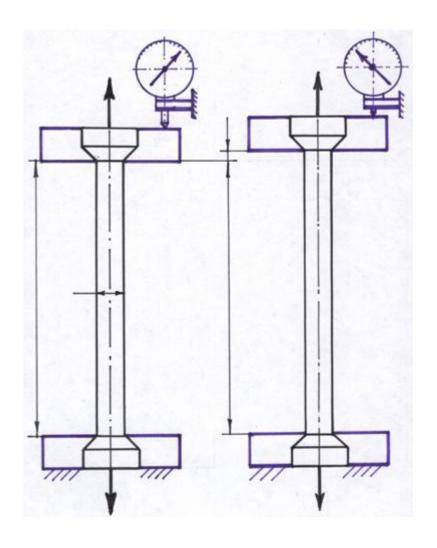


Рис. 1а Рис. 1б

Начало работы. Нагрузка на образец 15500 Н.

Образец закреплен К образцу приложена нагрузка F.

в испытательной машине. Удлинение образца $\Delta \ell$

Стрелки индикаторов устано-

влены на отметках «0».

1 – образец; 2 – нижняя траверса; 3 – верхняя траверса;

4 – индикатор часового типа; 5 – кронштейн.

РЕЗУЛЬТАТЫ РАБОТЫ

1. Удлинение образца при нагрузке $F_{\max} = H$, или к Γ с составило

$$\Delta \ell = \dots MM$$

2. Модуль упругости стали, определенный экспериментально с использованием формулы (4):

$$E = \frac{F \cdot \ell}{A \cdot \Delta \ell} = M\Pi a$$

3. Сравнение полученного результата с табличным значением модуля упругости стали $E_{CT} = \mathbf{2} \cdot \mathbf{10}^5$ МПа.

ТАБЛИЦА РЕЗУЛЬТАТОВ

Нагрузк	Диаметр	Площадь	Первоначальна	Величина	Значение
a	d	поперечног	Я	абсолютно	модуля
F, H.	образца, мм	о	длина образца ℓ , мм	й деформаци и	упругост и
		A, mm²		$\Delta\ell$, mm	стали
					Е, МПа

ВЫВОД

Модуль упругости (модуль Юнга) Е стали получился близким к табличному значению $E_{CT} = \mathbf{2} \cdot \mathbf{10}^5$ МПа. Значит, эксперимент и расчет были выполнены правильно.

Тема 2. Проведение сварочных работ

Лабораторная работа предполагает возможную экскурсию на участок выполнения сварочных работ и практическое участие в процессе сварки.

При этом следует соблюдать требования по технике безопасности.

Нарушение техники безопасности при проведении сварочных работ часто приводит к самым печальным последствиям — пожарам, взрывам и как следствие травмам и гибели людей.

Так же при сварке возможны следующие травмы – поражение электрическим током, ожоги от шлака и капель металла, травмы механического характера.

Для предотвращения всех этих положений важно неукоснительно соблюдать меры предосторожности.

- 1. Надежная изоляция всех, проводов, связанных с питанием источника тока и сварочной дуги, устройство геометрически закрытых включающих устройств, заземление корпусов сварочных аппаратов. Заземлению подлежат: корпуса источников питания, аппаратного ящика, вспомогательное электрическое оборудование. Сечение заземляющих проводов должно быть не менее 25 мм2. Подключением, отключением и ремонтом сварочного оборудования занимается только дежурный электромонтер. Сварщикам запрещается производить эти работы.
- 2. Применение в источниках питания автоматических выключателей высокого напряжения, которые в момент холостого хода разрывают сварочную цепь и подают на держатель напряжение 12 В.
- 3. Надежное устройство электрододержателя с хорошей изоляцией, которая гарантирует, что не будет случайного контакта токоведущих частей электрододержателя со свариваемым изделием или руками сварщика (ГОСТ 14651-69). Электрододержатель должен иметь высокую механическую прочность и выдерживать не менее 8000 зажимов электродов.
- 4. Работа в исправной сухой спецодежде и рукавицах. При работе в тесных отсеках и замкнутых пространствах обязательно использование резиновых галош и ковриков, источников освещения с напряжением не свыше 6-12 В.
- 5. При работе на электронно-лучевых установках предотвращение опасности поражения лучами жесткого рентгеновского (почти полное) поглощение

вредных излучении, связанных с горением дуги. Особую опасность в смысле поражения глаз представляет световой луч квантовых генераторов (лазеров) так как даже отраженные лучи лазера могут вызвать тяжелое повреждение глаз и кожи. Поэтому лазеры имеют автоматические устройства, предотвращающие такие поражения, но при условии строгого соблюдения производственной инструкции операторами-сварщиками, работающими на этих установках.

Защитные стекла, вставленные в щитки и маски, снаружи закрывают простым стеклом для предохранения их от брызг расплавленного металла. Щитки изготовляют из изоляционного металла - фибры, фанеры и по форме и размерам они должны полностью защищать лицо и голову сварщика (ГОСТ 1361-69).

Для ослабления резкого контраста между яркостью дуги и малой яркостью темных стен (кабины) последние должны быть окрашены в светлые тона (серый, голубой, желтый) с добавлением в краску окиси цинка с целью уменьшения отражения ультрафиолетовых лучей дуги, падающих на стены.

При работе вне кабины для защиты зрения окружающих, работающих сварщиков и вспомогательных рабочих должны применяться переносные щиты и ширмы.

Предотвращение опасности поражения брызгами расплавленного металла и шлака. Образующиеся при дуговой сварке брызги расплавленного металла имеют температуру до 1800 град. С. при которой одежда из любой ткани разрушается. Для защиты от таких брызг обычно используют спецодежду (брюки, куртку и рукавицы) из брезентовой или специальной ткани. Куртки при работе не следует вправлять в брюки, а обувь должна иметь гладкий верх, чтобы брызги расплавленного металла не попадали внутрь одежды, так как в этом случае возможны тяжелые ожоги.

Для защиты от соприкосновения с влажной, холодной землей и снегом, а также с холодным металлом при наружных работах и в помещении сварщики должны обеспечиваться теплыми подстилками, матами, подколенниками и подлокотниками из огнестойких материалов с эластичной прослойкой.

Предотвращение отравления вредными газами и аэрозолями, выделяющимися при сварке. Высокая температура дуги (6000- 8000° С) неизбежно приводит к тому, что часть сварочной проволоки, покрытий,

флюсов переходит в парообразное состояние. Эти пары, попадая в атмосферу цеха, конденсируются и превращаются в аэрозоль конденсации, частицы которой по дисперсности приближаются к дымам и легко попадают в дыхательную систему сварщиков. Эти аэрозоли представляют главную профессиональную опасность труда сварщиков. Количество пыли в зоне дыхания сварщика зависит главным образом от способа сварки и свариваемых материалов, но в известной степени определяется и типом конструкций. Химический состав электросварочной пыли зависит от способов сварки и видов основных и сварочных материалов.

Существуют строгие требования в области вентиляции при сварочных работах. Для улавливания сварочного аэрозоля на стационарных постах, а где это возможно, и на нестационарных нужно устанавливать местные отсосы в виде вытяжного шкафа вертикальной или наклонной панели равномерного стола подрешеточным При всасывания c OTCOCOM И др. крупногабаритных серийных конструкций на кондукторах, манипуляторах и т. п. местные отсосы необходимо встраивать непосредственно в эти приспособления. При автоматической сварке под флюсом, в защитных газах, электрошлаковой сварке применяют устройства с местным отсосом газов.

При использовании баллонов со сжатыми газами необходимо соблюдать установленные меры безопасности: не бросать баллоны, не устанавливать их вблизи нагревательных приборов, не хранить вместе баллоны с кислородом и горючими газами, баллоны хранить в вертикальном положении. При замерзании влаги в редукторе баллона с CO2 отогревать его только через специальный электроподогреватель или обкладывая тряпками, намоченными в горячей воде. Категорически запрещается отогревать любые баллоны со сжатыми газами открытым пламенем, так как это почти неизбежно приводит к взрыву баллона.

При производстве сварочных работ на емкостях, ранее использованных, требуется выяснение типа хранившегося продукта и наличие его остатков. Обязательна тщательная очистка сосуда от остатков продуктов и 2-3-кратная промывка 10%-ным раствором щелочей, необходима также последующая продувка сжатым воздухом для удаления запаха, который может вредно действовать на сварщика.

Категорически запрещается продувать емкости кислородом, что иногда пытаются делать, так как в этом случае попадание кислорода на одежду и

кожу сварщика при любом открытом источнике огня вызывает интенсивное возгорание одежды и приводит к ожогам со смертельным исходом.

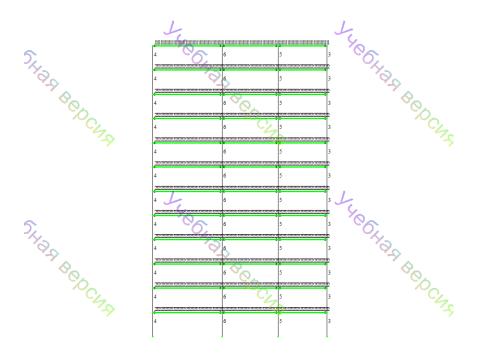
Взрывоопасность существует и при выполнении работ в помещениях, имеющих большое количество пылевидных органических веществ (пищевой муки, торфа, каменного угля). Эта пыль при определенной концентрации может давать взрывы большой силы. Помимо тщательной вентиляции для производства сварочных работ в таких помещениях требуется специальное разрешение пожарной охраны.

Предотвращение пожаров от расплавленного металла и шлака. Опасность возникновения пожаров по этой причине существует в тех случаях, когда сварку выполняют по металлу, закрывающему дерево либо горючие изолировочные материалы, на деревянных лесах, вблизи легко воспламеняющихся материалов и т. п. Все указанные варианты сварки не должны допускаться.

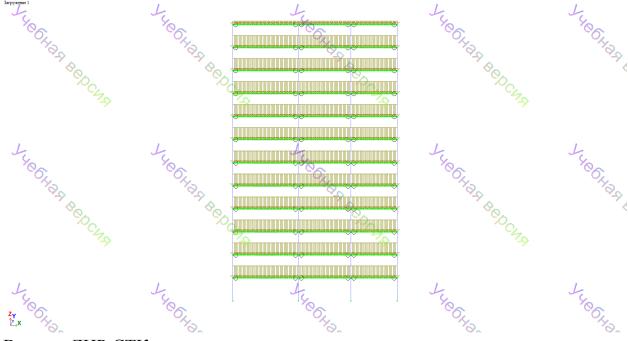
Предотвращение травм, связанных со сборочными и транспортными операциями (травмы механического характера). Важное значение имеет внедрение комплексной механизации и автоматизации, что значительно уменьшает опасность травм такого рода.

Основные причины травматизма при сборке и сварке: отсутствие транспортных средств для транспортировки тяжелых деталей и изделий; неисправность транспортных средств; неисправность такелажных приспособлений; неисправный инструмент: кувалды, молотки, гаечные ключи, зубила и т. п., отсутствие защитных очков при очистке швов от шлака; отсутствие спецодежды и других защитных средств.

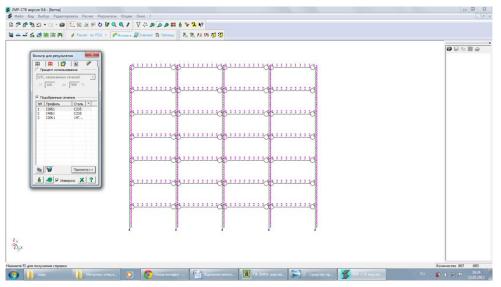
Меры безопасности в этом случае: все указанные средства и инструменты следует периодически проверять; такелажные работы должны производить лица, прошедшие специальный инструктаж; от рабочих необходимо требовать соблюдения всех правил по технике безопасности, включая работу в спецодежде, рукавицах; использование средств индивидуальной вентиляции (где это необходимо) и т. д. Важное значение имеет внедрение комплексной механизации и автоматизации, что значительно уменьшает опасность травм такого рода.


Чтобы было удобно работать сварщикам нужно соблюдать следующие рекомендации

- 1. Сборку и сварку крупногабаритных секций следует выполнять на специализированных местах, постелях, стендах, при этом должны быть обеспечены достаточные проходы с каждой стороны конструкции.
- 2. При сварке объемных секций на высоте необходимо устраивать леса с расположением сварочного оборудования вне рабочего места сварщика.
- 3. Все оборудование, которое при неисправном состоянии может оказаться под напряжением, должно иметь индивидуальное заземление с выводом к общему защитному заземлению.
- 4. Все сварочные установки должны находиться под наблюдением наладчика-монтера. Исправлять дефекты электросварочного оборудования имеет право только монтер-наладчик.
- 5. При сварке крупногабаритных изделий следует применять защитные щиты-ширмы, ограждающие место сварки со стороны общих проходов.

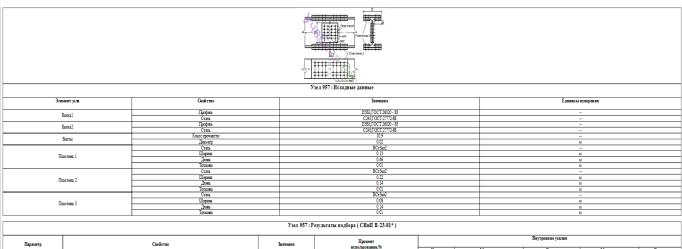

Тема 3. Исследование работы соединений металлических конструкций (на примере узлов металлических конструкций в системе Лир-СТК)

Дана расчетная схема. В ПК Лира создаем расчетную стержневую модель многоэтажной стальной рамы. Количество этажей -12, шаг -6 м, высота этажа -3.5 м, пролет: $L_1=10$ м, $L_2=8$ м, $L_3=7$ м количество пролетов -3, нагрузка на перекрытие -650 кг/м², нагрузка на покрытие -200 кг/м². В качестве элементов балок - двутавр (тип балочный), в качестве колонн - двутавр (тип колонный).


Назначаем связи (на 2,3, узлы по осям X и Z, на 1 и 4 по осям X,Z,UY) и жесткости элементов, учитывая при этом тип элемента.

Назначаем нагрузку. Врезаем шарниры. И назначаем дополнительные характеристики (сталь, тип элемента).

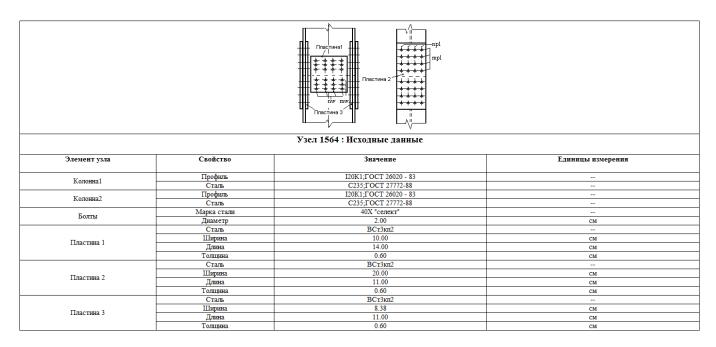
В среде ЛИР СТК задали дополнительные жесткостные характеристики, а именно указали марку стали, тип элемента. Произвели процедуру объединения КЭ в один конструктивный элемент(главное условие такого объединения заключается в том, что они должны лежать на одной прямой).

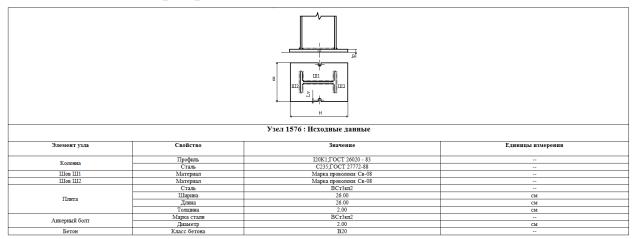


Теперь проверяем по 1 группе (использование несущей способности) и 2 группе(использование жесткостей) предельных состояний.

Далее проектируем узлы конструкции.

Для этого изменяем жесткости элементов на двутавр, выполняем расчет. Заполняем таблицы РСУ и расчет РСУ. Для обоих загружений — постоянное(0). Переходим в ЛИР СТК. Назначаем дополнительные характеристики.

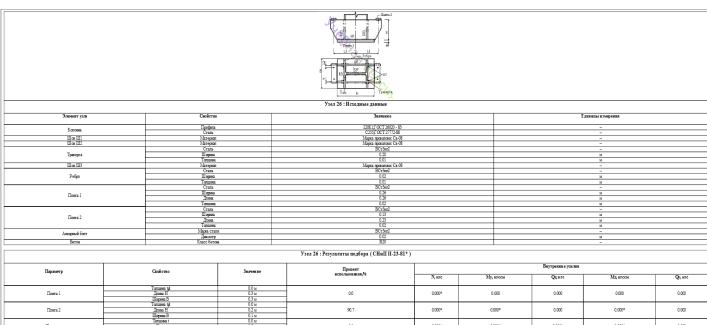

Стык балок.


		Узел 957 : Р	езультаты подбора (СНиП ІІ-23-81*)						
Параметр	Свойство	Зимение	Процент использования,%	Внутренняе усялыя					
			ictio.timosanne, 19	N, see	Му, кгеем	Qz, кге	Мz, кгеем	Оу, кге	
	Чисто ридов на попунантадне гр!	2							
Болты	Число стоябщов на полумантадие mpl	1	97.3	0.000*	1453989.263*	16594.443*	0.000*	0.000*	
20	Числорядов на полуманладне ги:	6	,,,,			1			
	Число столбцов на полунантадие <i>пти</i>	1							
	Топция t1	0.0 м	11.3	0.000*	1453989.263*	16594.443*	0.000		
Пластина 1	РазмерВ	0.1 м						0.000	
	Pannep H	0.5 м							
	Tompse t2	0.0 м		0.000*	1453989.263	16594.443	0.000*		
Пластина 2	РазмерВ	0.2 м	32.6					0.000*	
	Pannep H	0.1 м							
	Топция В	0.0 м							
Пластина 3	Размер В	0.1 м	35.4	0.000*	1453989.263	16594.443	0.000*	0.000*	
	Pannep H	0.1 м							
Earsta	Топция стенон	0.0 м	31.5	0.000*	1453989.263*	16594.443*	0.000*	0.000*	
	Топцияе полок	0.0 м	31.3	0.000*	140303.200	10094.96	0.00*	0.000	
Passep L1	#	0.0м	-			_	-		

усилия, участвующие в подборе или проверке соответствующего параметр

Стык колонн.

База колонны (шарнирная).


			Узел 1576 : Результаты подб	opa				
		•	Узел 1576 : Результаты подбо	opa				
Параметр Свойство Значение Процент Внутренние усилия								
			использования,%	N, TC	Му, тем	Qz, Tc	Мz, тсм	Qy, тс
	Толщина tpl	2.0 см						
Плита	Длина Н	26.0 см	26.3	-32.955*	0.000*	-0.000	-0.079*	0.091
	Ширина В	26.0 см						
Шов Ш1	Катет	0.4 см	11.8	-32.955*	0.000	-0.000	-0.079	0.091
Шов Ш2	Катет	0.4 см	11.8	-32.955*	0.000	-0.000	-0.079	0.091

st - усилия, участвующие в подборе или проверке соответствующего параметра.

Примечания

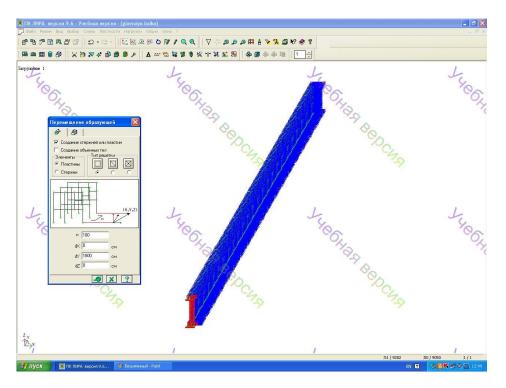
1. Торец колонны и поверхность плиты фрезеровать.

База колонны (жесткая).

Tomate	Параметр	Свойство	Значение Процент использования,%							
These 1				HCHO/IMO BSH HM ₂ 79	N, are	Му, кгеем	Qz, ure	Мz, кгеем	Qr, sere	
		Топциясь tpl								
Tomase T	Tanena 2 Tpanepea Pelipo Amegnadi Sore			0.0	0.000*	0.000	0.000	0.000	0.000	
There 2			0.3 м							
Transpect	Плена 2 Транерса Ребре Амеррай боге Ш се Ш 1 Ш са Ш 2			90.7	0.000*	0.000*	0.000	0.000*	0.000	
Typespica Type			0.1 м							
					0.000*		0.000*			
Tomograph	Траверса		0.3 м	0.0		0.000*		0.000*	0.000	
Perigo Fines										
Higher O's					0.000*				0.000*	
Asseption Acception A	Ребро		0.2 м							
Kare			0.0 M							
How III	Анкерный болг		4	0.0	0.000*	0.000*	0.000	0.000*	0.000	
Mare Creen Ke		Temmod 0.0 M 0.000°								
He III Kare				0.0	0.000*	0.000*	0.000*	0.000*	0.000*	
How HS Karer 0.0 x 0.0 0.000°			0.0 м							
Pansep L1 - 02 M				0.0						
				0.0	0.000*	0.000*	0.000*		0.000*	
Pannep L2 - 0.0 m		-						-		
	Passep L2	-	0.0 м					-		

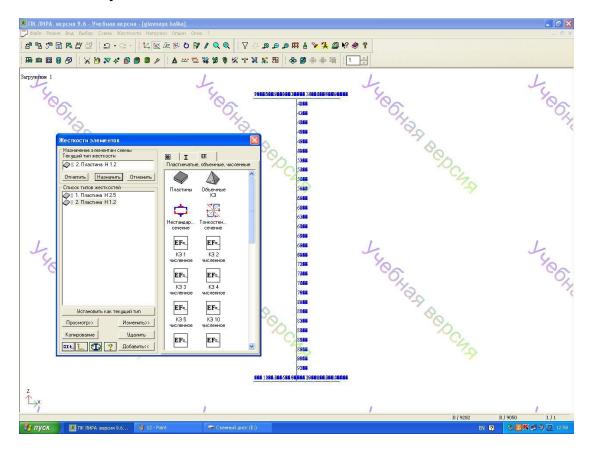
* - усили, участвующие в подборе или проверке соответствующего параметр

Примыкание балки к колонне.

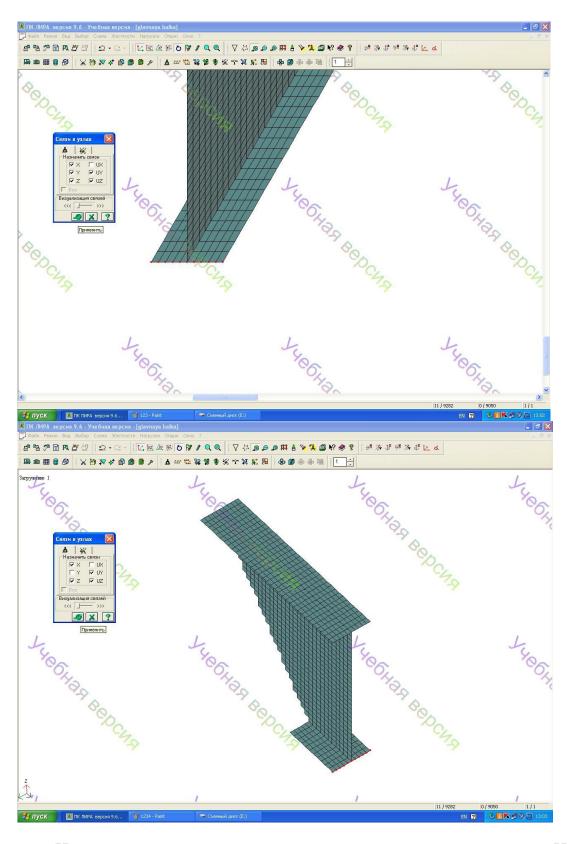

Same of the color of the colo				The most series 2						
Bank Book Brown Bissirot 1860 - 18				Узел 30 : Исходные данные						
Entering	3		oğerne	2mman	THA.		τ-	THE PART OF THE PA		
Case Construction Construction	OHEMEN JAME		one cras	Santa.				пинци пожучния		
Color Colo	P	П	рофия					-		
High High Marques Maya appearant C-26	Балка		Сталь	C245;FOCT	27772-88			_		
High High Month	Voncen	П	рофия	D0K1;FOCT	26020 - 83			_		
Heat III										
Same		M	терия	Марка провол	osar Cs-08					
Setted S	III oz III 2			Марка провол	osar Cs-08					
Crass	Болты									
Higher H		ئلہ	ивметр С	0.02 PC-2-	-3					
Totale				0.08						
Fourse	Пластина 1			0.08						
Crass BC-back										
Touse										
Tousies U3	W 3	I	ispen.	0.41				м		
The party Conferme Surveme Surveme The party Surveme	Illustries 2			0.13			М			
Hapanerp Casicraso Survense Hapanerr Hapanerr Hapanerry Hapanerr		To	ишина	0.01				М		
How III					(-23-81°)		Внутренние усилия			
Hos III	Параметр	Свойство	Значение	использования,%	N, krc	Му, кгеем	Qz, кгс	М г, к гесм	Qy, Kro	
Hos III	III.ce IIII	V wear	004	170	0.000*	0.000	10755 788*	0.000	0.000*	
Toursen 1					0.000*	0.000		0.000	0.000*	
Tensor Francy 1 0.1 M 98 0.000* 0.000 1975.288* 0.000				27.4	-	1		1.000	1	
Framep H 0.5 M	Пластина 1	Размер В 1		99.8	0.000*	0.000	19755.288*	0.000	0.000*	
Transcrises 2 Panner B2 0.4 M 99.4 0.000* 0.000 19755.285* 0.000		Passarp H1	0.5 M	1		1	1	I	1	
Редици 0.1 м Баты Комичество 3 91.5 0.000* 0.000 19755.288* 0.000 Комичество вере додов 1 91.5 0.000* 0.000 19755.288* 0.000		Топцина 12								
Season	Пластина 2			99.4	0.000*	0.000	19755.288*	0.000	0.000*	
Soffish Komprecting sept. pagges 1 91.5 0.000 19733.285 0.000										
К спичество верт. рид ов 1	Баты			91.5	0.000*	0.000	19755.288*	0.000	0.000*	
1	Passep L I	-			-	-	-	_		

Тема 4. Исследование напряженно-деформированного состояния стальной балки

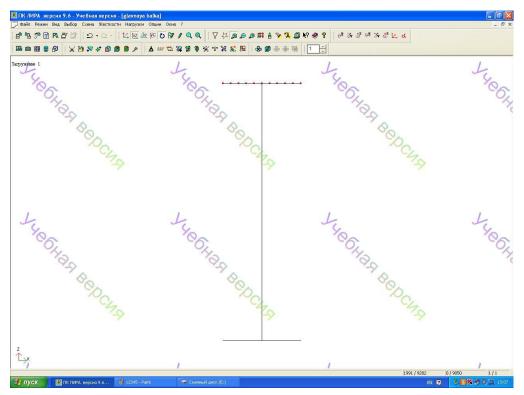
Цель работы: на основе исходных данных создать пространственную расчетную модель стальной балки, использую пластинчатый конечный элемент – оболочка.


При решении создаем «Файл / новый» указываем имя создаваемой задачи и устанавливаем признак схемы 5 - шесть степени свободы в узле.

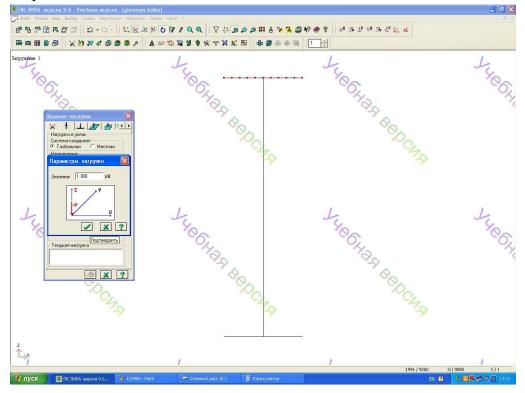
В расчетной схеме геометрия пластинчатых элементов создается по срединой плоскости пластины, созданные узлы соединяем стержневыми элементами с 10 типом КЭ. Чтобы создать пластинчатые элементы необходимо выделить все элементы, затем выбираем вкладку на панели инструментов Объект, заданные перемещением или вращением образующей. В появившемся окошке указываем тип создаваемых элементов, их пролет и количество, подтверждаем выбор.


В жесткостных характеристиках пластины задаем модуль упругости материала, коэффициент Пуассона, толщину пластины.

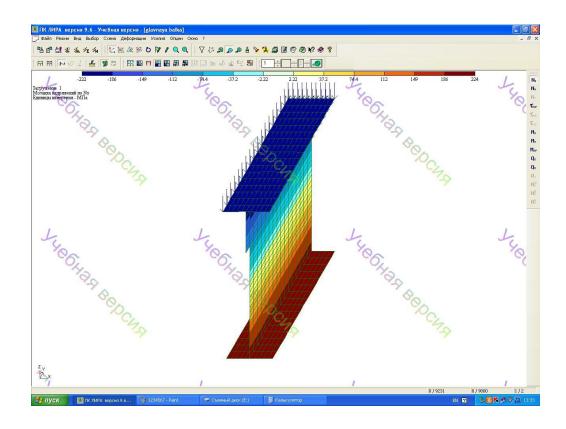
Выделив на схеме все элементы, присваиваем выбранную жесткость всем соответствующим элементам схемы.



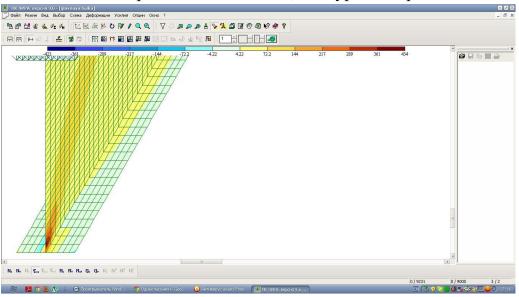
Назначаем закрепления:


выделяем на схеме передние узлы, выбираем пункт меню **Схема / Связи / связи в узлах,** назначаем связи. Далее проделываем то же самое с другим торцом балки.

Назначаем нагрузку в соответствии с исходными данными. Но не всю поверхность целиком, а разбиваем плоскость на узлы, и назначаем на каждый узел в отдельности.



Величину нагрузки рассчитываем в зависимости от того сколько узлов на поверхности.



Производим расчет.

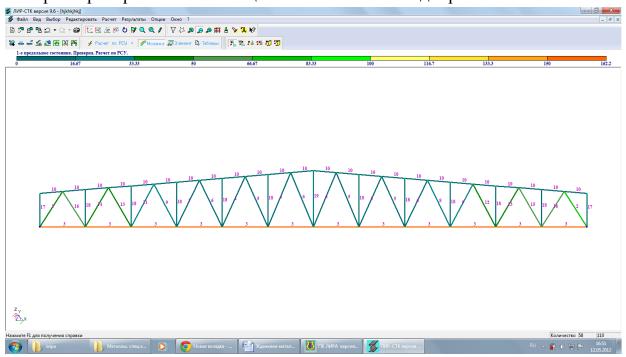
Получаем напряжения нормальные =224 МПа, а в расчете 229 МПа, что очень близко.

Касательные напряжения = 92 МПа, а в курсовом расчете = 84 МПа.

Тема 5. Исследование напряженно-деформированного состояния стальной конструкции.

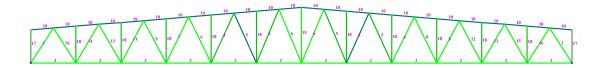
В программном комплексе LIRA создаем расчетную модель стальной конструкции - фермы

Для этого используем пункт меню — генерация ферм. Выбираем наиболее похожую ферму, задаем размеры. Длина — 36 м, высота в середине пролета — 3.7 м, в опорной стойке — 2.2 м.


Назначаем жесткости, для этого используем уголки:

- восходящие (140*140);
- нисходящие (125*125);
- верхний пояс (125*125);
- нижний пояс (100*100);
- стойки (100*100).

Назначаем связи на левый узел: X и Z. На правый узел: Z.


Нагрузка на узлы — снеговая = 180 кг/м^2 , и условно постоянная = 300 кг/м^2 . В итоге получаем нагрузку на средние узлы = 63,54 кH, на крайние узлы = 31.77 кH.

Теперь проверяем с помощью ЛИР СТК подобранные сечения

Результат ЛИР СТК:

I-е предельное состояние. Подбор. Расчет по РСУ.

 $\stackrel{z_{\gamma}}{\longrightarrow} x$