

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ **Рубцовский индустриальный институт (филиал)**

федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный технический университет им. И.И. Ползунова» (РИИ АлтГТУ)

Э.С. Маршалов

КОНСТРУКЦИИ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Методические указания к самостоятельной работе студентов по дисциплинам «Энергетические установки», «Энергетические установки автомобилей и тракторов», студентов всех форм обучения направления подготовки «Наземные транспортно-технологические комплексы» и специальности «Наземные транспортно-технологические средства»

Рубцовск 2017

УДК 629.114

Маршалов Э.С. Конструкции энергетических установок: Методические самостоятельной работе студентов указания ПО дисциплинам «Энергетические установки», «Энергетические установки автомобилей и тракторов», студентов всех форм обучения направления подготовки «Наземные транспортно-технологические комплексы» специальности И «Наземные транспортно-технологические средства» / Рубцовский индустриальный институт. – Рубцовск: 2017. – 26 с.

Предназначены в качестве руководства при выполнении студентами самостоятельных работ по дисциплинам «Энергетические установки» и «Энергетические установки автомобилей и тракторов». Содержат перечень вопросов по конструкции и принципу работы основных элементов и систем двигателей внутреннего сгорания, а также список литературы по темам изучаемых дисциплин.

Рассмотрены и одобрены на заседании кафедры НТС Протокол №.4 от 30.11.2017 г.

Рецензент:3 зав. кафедрой ТиТМиПП к.т.н., доцент

В.В. Гриценко

[©] Рубцовский индустриальный институт, 2017

ВВЕДЕНИЕ

Настоящие методические указания представляют собой сборник заданий к самостоятельной работе по дисциплинам «Энергетические установки», «Энергетические установки автомобилей и тракторов» студентов всех форм обучения направления подготовки «Наземные транспортно-технологические комплексы» и специальности «Наземные транспортно-технологические средства»

Указанный сборник контрольных работ объединяет следующие темы:

- Общие сведения об энергетических установках;
- Кривошипно-шатунный механизм;
- Уравновешивание двигателей;
- Механизм газораспределения;
- Система охлаждения;
- Система питания;
- Система смазки;
- Система пуска.

Вопросы, входящие в контрольные работы, условно разбиты на три группы, имеющие, соответственно, индексы 1,2 и 3.

- вопросы I группы (1.2, 1.12, 1.95 и т.п.) предусматривают ответы объемом, как правило, 1-3 предложения. Обычно это определения (приложение Б).
- вопросы II группы (2.5, 2.15, 2.26 и т.п.) предусматривают достаточно объемные ответы (1-2 страницы). Обычно это описание конструкции с приведением схем, графиков и т.д. (приложение Б).
- вопросы III группы (3.6, 3.17, 3.35 и т.п.) так называемые вопросы «на сообразительность» и требуют, как правило, коротких односложных ответов (приложение Б).

Контрольные работы настоящего методического пособия состоят из пяти вопросов: три вопроса I группы и по одному вопросу II и III групп (приложение A).

Пример ответов на вопросы контрольной работы приведен в приложении Б.

Примерные тестовые вопросы к зачету приведены в приложении В.

Тема: Общие сведения

- 1.1 Что такое двигатель? Дайте определение.
- 1.2 Что такое литраж двигателя? Дайте определение.
- 1.3 Что такое рабочий объем цилиндра двигателя? Дайте определение.
- 1.4 Что такое степень сжатия? Дайте определение.
- 1.5 Что такое такт двигателя? Дайте определение.
- 1.6 Что такое рабочий цикл двигателя? Дайте определение.
- 1.7 Что такое верхняя мертвая точка? Дайте определение.
- 1.8 Что такое порядок работы цилиндров двигателя? Дайте определение.
- 1.9 Что такое ход поршня? Дайте определение.
- 1.10 Что такое объем камеры сгорания? Дайте определение.
- 1.11 Что такое полный объем цилиндра двигателя? Дайте определение.
- 1.12 Для чего необходима система охлаждения ДВС?
- 1.13 Для чего необходима система питания ДВС?
- 1.14 Что такое индикаторная диаграмма? Дайте определение.
- 1.16 Для чего необходима система смазки ДВС?
- 1.17 Что такое нижняя мертвая точка? Дайте определение.
- 1.18 Что такое регулятор частоты вращения?
- 1.19 Назовите назначение механизма газораспределения ДВС.
- 1.20 Назовите назначение кривошипно-шатунного механизма ДВС.
- 2.1 Классификация двигателей внутреннего сгорания.
- 2.2 Основные механизмы и системы ДВС и их назначение.
- 2.3 Рабочий цикл бензинового четырехтактного ДВС с непосредственным впрыском.
 - 2.4 Рабочий цикл четырехтактного дизельного двигателя.
 - 2.5 Рабочий цикл двухтактного ДВС.
- 2.6 Роторно-поршневой двигатель (опишите конструкцию и принцип работы, нарисуйте схему).
- 2.7 Напишите порядок работы цилиндров двигателей: ЯМЗ-650, ЯМЗ-7511, ЯМЗ-850, А-41, Д-440, Д-260, КамАЗ-740, ЗМЗ-405, ВАЗ-21129.
- 3.1 Сколько оборотов делает коленчатый вал за один рабочий цикл четырехтактного ДВС?
- 3.2 Сколько оборотов делает коленчатый вал за один рабочий цикл двухтактного ДВС?
- 3.3 Назовите порядок работы шестицилиндрового рядного четырехтактного двигателя.

Тема: Кривошипно-шатунный механизм. Уравновешивание двигателей

- 1.21 Назовите назначение кривошипно-шатунного механизма.
- 1.22 Назовите основные элементы кривошипно-шатунного механизма.
- 1.23 Для чего применяют дезаксиальный кривошипно-шатунный механизм?

- 1.24 Что такое дезаксиальный кривошипно-шатунный механизм?
- 1.25 Что такое блок-картер двигателя? Дайте определение.
- 1.26 Из каких элементов состоит шатун?
- 1.27 Для чего в цилиндрах двигателя применяют вставные гильзы?
- 1.28 Что такое мокрая гильза цилиндра двигателя?
- 1.29 Для чего двигателю необходим маховик?
- 1.30 Для чего нужны компрессионные поршневые кольца?
- 1.31 Для чего нужны маслосъемные поршневые кольца?
- 1.32 Назовите назначение шатуна.
- 1.33 Из каких элементов состоит коленчатый вал?
- 1.34 Для чего на передний конец коленчатого вала двигателя устанавливают храповик?
- 1.35 Назовите основные требования, предъявляемые к коленчатому валу двигателя.
- 1.36 Назовите основные неисправности кривошипно-шатунного механизма.
 - 1.37 Что такое бобышки поршня и для чего они предназначены?
- 1.38 Какое влияние оказывают силы инерции возвратно-поступательно движущихся и вращающихся масс на работу двигателя?
 - 1.39 Что такое полностью уравновешенный двигатель?
 - 1.40 Что такое гаситель крутильных колебаний?
 - 1.41 Какие колебания называют крутильными?
 - 1.42 Какие виды гасителей крутильных колебаний Вы знаете?
- 2.8 Какие силы действуют в кривошипно-шатунном механизме при работе двигателя? Нарисуйте схему.
- 2.9 Перечислите основные элементы кривошипно-шатунного механизма и дайте их определения.
- 2.10 Опишите устройство и принцип действия компрессионных и маслосъемных поршневых колец. Нарисуйте схемы.
- 2.11 Опишите принцип действия жидкостного гасителя крутильных колебаний.
- 3.4 Почему в холодном состоянии двигателя поршневой палец и бобышки поршня соединены с небольшим натягом?
- 3.5 Для чего в некоторых двухтактных ДВС внутри поршневого пальца выполнена перегородка?
- 3.6 Если направляющая часть поршня выполнена овальной формы, то где расположена меньшая ось овала и почему?
- 3.7 Из-за чего происходит пригорание (закоксовывание) поршневых колец?
- 3.8 В некоторых двигателях направляющую часть поршня изготовляют овальной формы. С какой целью?
- 3.9 В некоторых двигателях диаметр нижней части поршня выполняют большим, чем верхний. С какой целью?

- 3.10 Какой двигатель, при прочих равных условиях, обладает большей уравновешенностью: двухтактный или четырехтактный?
- 3.11 Для чего болты крепления маховика двигателя располагают несимметрично?
- 3.12 C какой целью на наружную поверхность маховика напрессовывают зубчатый венец?
 - 3.13 Что такое полноопорный коленчатый вал?
- 3.14 Почему у дизельных двигателей обычно больше компрессионных поршневых колец, чем у бензиновых двигателей?

Тема: Механизм газораспределения

- 1.43 Назовите назначение механизма газораспределения двигателя.
- 1.44 Назовите основные элементы механизма газораспределения.
- 1.45 Что такое перекрытие клапанов?
- 1.46 Что такое диаграмма фаз газораспределения?
- 1.47 Из каких материалов изготавливают клапаны?
- 1.48 Какие формы клапанов в механизме газораспределения Вы знаете?
- 1.49 Что такое действительный заряд цилиндра?
- 1.50 Для чего в механизме газораспределения служит толкатель?
- 1.51 Каким образом приводится во вращение распределительный вал двигателя? (перечислить способы).
- 1.52 Назовите основные причины выхода из строя системы газораспределения двигателя.
 - 1.53 Для чего двигателю необходим декомпрессионный механизм?
- 2.12 Опишите работу механизма газораспределения с боковым расположением клапанов.
- 2.13 Опишите работу механизма газораспределения с нижним расположением клапанов.
- 2.14 Опишите работу механизма газораспределения с верхним расположением клапанов.
- 2.15 Опишите работу механизма газораспределения с подвесным расположением клапанов.
- 2.16 Опишите механизм газораспределения автомобиля МАЗ-4370 (двигатель Д-245).
- 2.17 Опишите механизм газораспределения автомобиля ГАЗ-3307 (двигатель 3M3-5231.10).
- 2.18 Опишите механизм газораспределения автомобиля КамАЗ-5320 (двигатель КамАЗ-740).
- 2.19 Опишите механизм газораспределения автомобиля Урал-4320 (двигатель ЯМЗ-536).
- 2.20 Опишите механизм газораспределения трактора МТЗ-1221 (двигатель Д-260).

- 2.21 Опишите механизм газораспределения трактора МТЗ-80 (двигатель Д-243).
- 2.22 Опишите механизм газораспределения трактора ВТ-150 (двигатель Д-442).
- 3.15 Почему плечи коромысел в механизме газораспределения с нижним расположение распределительного вала выполнены различной длины? С какой стороны плечо больше?
- 3.16 Можно ли на дизельных ДВС использовать механизм газораспределения с боковым расположением клапанов и почему?
- 3.17 В механизме газораспределения толкатель одновременно с возвратно-поступательным совершает и вращательное движение. Зачем?
- 3.18 Для чего переход от стержня к тарелке клапана в механизме газораспределения выполнен плавным?
- 3.19 Для чего в механизмах газораспределения некоторых двигателей применяют качающиеся роликовые толкатели?
 - 3.20 Верхнее и боковое расположение клапанов это одно и то же?
 - 3.21 Верхнее и подвесное расположение клапанов это одно и то же?
- 3.22 С какой целью в механизмах газораспределения некоторых двигателей применяют механизм поворота клапанов?
- 3.23 Почему при установке двух пружин в клапанном механизме они навиты в разные стороны?

Тема: Система охлаждения

- 1.54 Назовите назначение системы охлаждения двигателя.
- 1.55 Перечислите основные элементы системы охлаждения двигателя.
- 1.56 Назовите основные причины выхода из строя системы охлаждения двигателя.
 - 1.57 Для чего в системе охлаждения служит термостат?
 - 1.58 Что такое закрытая система охлаждения?
 - 1.59 Для чего в системе охлаждения двигателя применяют жалюзи?
 - 1.60 Что такое открытая система охлаждения?
- 1.61 Из каких основных элементов состоит жидкостная система охлаждения двигателя?
- 1.62 Для каких целей в системе охлаждения двигателя используют радиатор?
 - 1.63 Какие типы термостатов Вы знаете?
- 1.64 Для чего в радиаторе системы охлаждения двигателя установлен паровоздушный клапан?
- 1.65 Назовите основные причины выхода из строя системы охлаждения двигателя.
- 1.66 Назовите основные преимущества и недостатки воздушной системы охлаждения.

- 2.23 Опишите работу системы охлаждения двигателя с принудительной циркуляцией жидкости.
 - 2.24 Опишите работу термосифонной системы охлаждения.
- 2.25 Опишите систему охлаждения автомобиля УАЗ-3163 (двигатель ЗМЗ-40906).
- 2.26 Опишите систему охлаждения автомобиля МАЗ-4370 (двигатель Д-245)
- 2.27 Опишите систему охлаждения автомобиля ГАЗ-3307 (двигатель ЗМЗ-5231.10).
- 2.28 Опишите систему охлаждения автомобиля КамАЗ-5320 (двигатель КамАЗ-740).
- 2.29 Опишите систему охлаждения автомобиля Урал-4320 (двигатель ЯМЗ-536).
 - 2.30 Опишите систему охлаждения трактора МТЗ-80 (двигатель Д-243).
- 2.31 Опишите систему охлаждения трактора К-701 (двигатель ЯМЗ-240БМ2-4).
- 3.24 Какая система охлаждения применяется на автомобиле BA3-2191 LADA Granta (двигатель BA3-21126), жидкостная или воздушная?
- 3.25 Какая система охлаждения применяется на автомобиле Урал-4320 (двигатель ЯМЗ-536), жидкостная или воздушная?
- 3.26 Какая система охлаждения применяется на автомобиле БелАЗ-7547 (двигатель ЯМЗ-240НМ2), жидкостная или воздушная?
- 3.27 Какая система охлаждения применяется на тракторе ЛТЗ-55 (двигатель Д-144), жидкостная или воздушная?
- 3.28 Какая система охлаждения применяется на тракторе ДЭТ-320 (двигатель ЯМЗ-7512.10), жидкостная или воздушная?
- 3.29 Какая система охлаждения применяется на тракторе BT3-2032 (двигатель Д-120), жидкостная или воздушная?

Тема: Система питания

- 1.67 Назовите назначение системы питания.
- 1.68 Какие способы смесеобразования применяются в ДВС?
- 1.69 Что такое богатая горючая смесь?
- 1.70 Что такое бедная горючая смесь?
- 1.71 Какую горючую смесь называют нормальной?
- 1.72 Что такое коэффициент избытка воздуха?
- 1.73 Что такое карбюратор?
- 1.74 Назовите основные режимы работы двигателя.
- 1.75 Что такое угол опережения зажигания?
- 1.76 Что такое угол опережения впрыска?
- 1.77 Что такое инжектор?
- 1.78 Что представляет собой распределенный впрыск топлива?
- 1.79 Что представляет собой непосредственный впрыск топлива?

- 1.80 Что представляет собой одноточечный впрыск топлива?
- 1.81 Какую функцию в инжекторном ДВС выполняет датчик положения коленчатого вала?
- 1.82 Какое соотношение воздуха и топлива по массе характерно для стехиометрического состава горючей смеси?
 - 1.83 Какие функции в двигателе выполняет адсорбер?
- 1.84 Чем система питания с непосредственным впрыском отличается от системы питания с распределенным впрыском?
- 1.85 Какую функцию в системе питания дизельного двигателя выполняет топливный насос высокого давления?
 - 1.86 Какие форсунки называют управляемыми?
 - 1.87 Что представляет собой характеристика карбюратора?
 - 1.88 Из каких элементов состоит простейший карбюратор?
- 2.32 Опишите основные способы очистки воздуха, поступающего в двигатель.
 - 2.33 Опишите работу комбинированного воздухоочистителя.
 - 2.34 Опишите работу простейшего карбюратора.
- 2.35 Назовите основные устройства простейшего карбюратора (перечислить, дать определения).
 - 2.36 Опишите работу системы непосредственного впрыска топлива.
- 2.37 Перечислите основные достоинства и недостатки систем непосредственного впрыска топлива.
- 2.38 Назовите основные элементы системы питания ДВС (перечислить, дать определения).
 - 2.39 Опишите процесс смесеобразования в дизельных ДВС.
 - 2.40 Опишите работу форсунки с гидравлическим приводом.
 - 2.41 Опишите принцип работы глушителя. Нарисуйте схему.
 - 3.30 По каким признакам различают сухие и мокрые фильтры?
 - 3.31 Чем бедная горючая смесь отличается от обедненной?
 - 3.32 Чем богатая горючая смесь отличается от обогащенной?
- 3.33 У каких двигателей (карбюраторных или инжекторных), при прочих равных условиях, более высокий коэффициент наполнения цилиндра?
- 3.34 В системе питания инжекторного двигателя присутствует датчик, при выходе из строя которого движение автомобиля невозможно. Аварии всех остальных датчиков позволяют продолжить движение. Назовите этот датчик.
 - 3.35 Расшифруйте аббревиатуру ТНВД.
 - 3.36 Чем открытая форсунка отличается от закрытой?
- 3.37 Для чего в конструкциях топливных баков предусмотрены перегородки?
- 3.38 Чем карбюратор газобаллонного автомобиля отличается от бензинового?
 - 3.39 Существуют ли шестеренчатые топливоподкачивающие насосы?
 - 3.40 Чем смазываются плунжерные пары в процессе работы?

Тема: Система смазки

- 1.89. Что такое сухое трение?
- 1.90 Что такое жидкостное трение?
- 1.91 Для чего в двигателях необходима система смазки?
- 1.92 Для чего в смазочные масла добавляют присадки?
- 1.93 Что представляют собой присадки к смазочным маслам?
- 1.94 Для чего в системе смазки необходим масляный насос?
- 1.95 Назовите назначение масляных фильтров.
- 1.96 Какие виды систем смазки Вы знаете?
- 2.42 Как классифицируются присадки к смазочным маслам?
- 2.43 Перечислите основные элементы системы смазки и их назначение.
- 2.44 Опишите принцип работы системы смазки разбрызгиванием и укажите ее основные преимущества и недостатки.
- 2.45 Что такое комбинированная система смазки? Укажите ее преимущества и недостатки.
 - 2.46 Назовите основные неисправности системы смазки.
- 3.40 Какая система смазки наиболее распространена комбинированная или разбрызгиванием, и почему?
- 3.41 Как влияют депрессантные присадки на температуру застывания масла?
 - 3.42 Каким образом осуществляется вентиляция картера дизельного ДВС?
- 3.43 Каким образом осуществляется вентиляция картера ДВС с искровым зажиганием?
- 3.44 Какой вид трения, сухой или жидкостный, преобладает в современных ДВС?

Тема: Система пуска

- 1.97 Назначение системы пуска.
- 1.98 Какие способы пуска двигателя Вы знаете?
- 1.99 Что такое пусковой момент и пусковая частота вращения коленчатого вала?
 - 1.100 Какие виды предпусковых подогревателей Вы знаете?
- 2.47 Опишите процесс пуска двигателя электрическим стартером (нарисуйте схему).
 - 2.48 Опишите процесс пуска двигателя при помощи пускового двигателя.
 - 2.49 Опишите устройство жидкостного предпускового подогревателя.
- 3.45 Для чего при пуске некоторых дизельных ДВС включают декомпрессионный механизм?
- 3.46 Назовите преимущества и недостатки пускового ДВС по сравнению с электрическим стартером.
- 3.47 Для чего в некоторых двигателях используют предпусковые подогреватели?

Список литературы

- 1. Баширов Р.М. Автотракторные двигатели: конструкция, основы теории и расчета: Учебник для вузов [Электронный ресурс] СПб.: Лань, 2017. 336 с. Режим доступа: https://e.lanbook.com/book/96242?category_pk=43733#book_name
- 2. Вахламов В.К. Автомобиль: Основы конструкции: Учебник для студ. высш. учеб. заведений. М.: Издательский центр «Академия», 2004.- 528 с.
- 3. Ерохов В.И. Системы впрыска бензиновых двигателей: Учебник для вузов [Электронный ресурс] / В.И. Ерохов М.: Горячая линия-Телеком, 2011. 704 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=4231
- 4. Ерохов В.И. Газобалонные автомобили: Учебник для вузов [Электронный ресурс] / В.И. Ерохов. М.: Горячая линия-Телеком, 2012. 598 с. Режим доступа: https://e.lanbook.com/book/63248?category_pk=938#book_name
- 5. Николаенко А.В. Теория, конструкция и расчет автотракторных двигателей. М.: Колос, 1984. 355 с.
- 6. Поливаев О.И., Костиков О.М., Ворохобин А.В., Ведринский О.С. Конструкция тракторов и автомобилей: Учебное пособие [Электронный ресурс] / Под общ. ред. проф. О.И. Поливаева. СПб.: Лань, 2013. 288 с. Режим доступа: https://e.lanbook.com/book/13011?category_pk=938#book_name
- 7. Райков И.Я., Рытвинский Г.Н. Конструкция автомобильных и тракторных двигателей. М.: Высшая школа, 1986.
- 8 Яковлев В.Ф. Современные зарядные и пусковые устройства для автомобилей: Учебное пособие [Электронный ресурс] СПб.: Лань, 2014. 176 с. Режим доступа:

https://e.lanbook.com/book/50173?category_pk=938#book_name

Приложение А **Контрольная работа №1**

(Общие сведения, кривошипно-шатунный механизм, уравновешивание двигателей)

двигатолог)							
Номер	Номер вопроса						
варианта							
1	1.1	1.27	1.12	2.1	3.1		
2	1.2	1.28	1.13	2.2	3.2		
3	1.3	1.29	1.15	2.3	3.3		
4	1.4	1.30	1.16	2.4	3.4		
5	1.5	1.31	1.17	2.5	3.6		
6	1.6	1.32	1.18	2.6	3.5		
7	1.7	1.33	1.19	2.7	3.7		
8	1.8	1.34	1.20	2.8	3.8		
9	1.9	1.35	1.21	2.9	3.9		
10	1.10	1.36	1.22	2.10	3.10		
11	1.11	1.37	1.23	2.11	3.11		
12	1.12	1.38	1.25	2.1	3.12		
13	1.13	1.39	1.26	2.2	3.13		
14	1.14	1.40	1.27	2.3	3.14		
15	1.15	1.41	1.28	2.4	3.1		
16	1.16	1.42	1.29	2.5	3.3		
17	1.17	1.1	1.30	2.6	3.2		
18	1.18	1.2	1.31	2.7	3.1		
19	1.19	1.3	1.32	2.8	3.5		
20	1.20	1.5	1.33	2.9	3.6		
21	1.21	1.6	1.35	2.10	3.7		
22	1.22	1.7	1.36	2.11	3.8		
23	1.23	1.8	1.37	2.1	3.9		
24	1.24	1.9	1.38	2.2	3.11		
25	1.25	1.10	1.39	2.3	3.12		
26	1.26	1.11	1.41	2.5	3.13		

Контрольная работа №2 (Механизм газораспределения, система охлаждения двигателя)

Номер	Номер вопроса				
варианта					
1	1.43	1.54	1.64	2.12	3.15
2	1.44	1.55	1.63	2.15	3.16
3	1.45	1.56	1.62	2.14	3.17
4	1.46	1.57	1.61	2.13	3.18
5	1.47	1.58	1.59	2.16	3.19
6	1.48	1.59	1.60	2.17	3.20
7	1.49	1.60	1.57	2.18	3.21
8	1.50	1.61	1.58	2.19	3.22
9	1.51	1.62	1.56	2.20	3.23
10	1.52	1.63	1.55	2.21	3.24
11	1.53	1.43	1.54	2.22	3.26
12	1.54	1.44	1.53	2.23	3.25
13	1.55	1.45	1.52	2.24	3.27
14	1.56	1.46	1.51	2.25	3.28
15	1.57	1.47	1.50	2.26	3.29
16	1.58	1.48	1.49	2.27	3.15
17	1.59	1.49	1.48	2.28	3.16
18	1.60	1.50	1.47	2.29	3.17
19	1.61	1.51	1.46	2.30	3.18
20	1.62	1.52	1.45	2.31	3.19
21	1.63	1.53	1.44	2.15	3.20
22	1.64	1.51	1.43	2.13	3.21
23	1.65	1.50	1.45	2.17	3.22
24	1.66	1.49	1.46	2.27	3.23
25	1.43	1.66	1.47	2.29	3.25
26	1.44	1.65	1.48	2.28	3.26

Контрольная работа №3

(Система питания двигателя)

Номер	Номер вопроса				
варианта					
1	1.67	1.84	1.77	2.32	3.30
2	1.69	1.83	1.78	2.33	3.31
3	1.68	1.82	1.79	2.34	3.32
4	1.70	1.81	1.83	2.35	3.33
5	1.71	1.80	1.81	2.36	3.34
6	1.72	1.79	1.82	2.37	3.35
7	1.73	1.78	1.83	2.38	3.36
8	1.74	1.77	1.84	2.39	3.37
9	1.75	1.76	1.85	2.40	3.38
10	1.76	1.75	1.86	2.41	3.39
11	1.77	1.74	1.87	2.32	3.30
12	1.78	1.73	1.88	2.33	3.31
13	1.79	1.72	1.67	2.34	3.32
14	1.80	1.71	1.68	2.35	3.33
15	1.81	1.70	1.69	2.36	3.34
16	1.82	1.68	1.70	2.37	3.35
17	1.83	1.67	1.71	2.38	3.36
18	1.84	1.67	1.72	2.39	3.37
19	1.85	1.68	1.73	2.40	3.38
20	1.86	1.69	1.74	2.41	3.39
21	1.87	1.70	1.75	2.32	3.30
22	1.88	1.71	1.76	2.33	3.31
23	1.88	1.72	1.77	2.34	3.32
24	1.87	1.73	1.78	2.35	3.33
25	1.86	1.75	1.79	2.36	3.35
26	1.85	1.76	1.80	2.37	3.36

Контрольная работа №4

(Система смазки, система пуска двигателя)

Номер	Номер вопроса				
варианта					
1	1.89	1.92	1.95	2.47	3.40
2	1.90	1.93	1.94	2.48	3.42
3	1.91	1.94	1.93	2.44	3.45
4	1.92	1.95	1.91	2.49	3.43
5	1.93	1.96	1.98	2.46	3.44
6	1.94	1.97	1.89	2.42	3.41
7	1.95	1.98	1.89	2.43	3.46
8	1.96	1.99	1.90	2.44	3.47
9	1.97	1.100	1.91	2.45	3.40
10	1.98	1.89	1.95	2.43	3.41
11	1.99	1.90	1.93	2.44	3.42
12	1.100	1.91	1.94	2.45	3.43
13	1.100	1.92	1.95	2.46	3.44
14	1.99	1.93	1.96	2.47	3.45
15	1.98	1.94	1.97	2.48	3.47
16	1.97	1.95	1.98	2.49	3.46
17	1.96	1.91	1.99	2.42	3.40
18	1.95	1.97	1.100	2.43	3.41
19	1.94	1.98	1.89	2.44	3.42
20	1.93	1.99	1.90	2.45	3.43
21	1.92	1.100	1.91	2.46	3.44
22	1.91	1.100	1.92	2.47	3.45
23	1.90	1.99	1.93	2.48	3.41
24	1.89	1.98	1.95	2.49	3.42
25	1.90	1.97	1.96	2.42	3.46
26	1.91	1.96	1.97	2.43	3.47

Контрольная работа №5 (Обобщающая)

Номер	Номер вопроса				
варианта					
1	1.1	1.30	1.58	2.47	3.31
2	1.2	1.31	1.59	2.43	3.35
3	1.3	1.32	1.60	2.17	3.38
4	1.4	1.33	1.61	2.15	3.39
5	1.5	1.34	1.62	2.39	3.41
6	1.6	1.35	1.63	2.38	3.43
7	1.7	1.36	1.65	2.37	3.47
8	1.8	1.37	1.66	2.36	3.15
9	1.9	1.38	1.58	2.35	3.16
10	1.10	1.39	1.53	2.33	3.17
11	1.11	1.40	1.65	2.32	3.18
12	1.12	1.41	1.70	2.31	3.21
13	1.13	1.42	1.71	2.29	3.23
14	1.16	1.43	1.72	2.27	3.7
15	1.17	1.45	1.73	2.25	3.9
16	1.97	1.46	1.75	2.23	3.12
17	1.19	1.55	1.76	2.19	3.5
18	1.20	1.48	1.61	2.41	3.6
19	1.21	1.49	1.78	2.40	3.1
20	1.22	1.59	1.79	2.12	3.2
21	1.59	1.51	1.80	2.9	3.3
22	1.99	1.52	1.81	2.8	3.28
23	1.26	1.53	1.82	2.6	3.25
24	1.27	1.55	1.83	2.5	3.23
25	1.28	1.56	1.85	2.2	3.22
26	1.29	1.57	1.86	2.1	3.43

Приложение Б

Пример выполнения контрольной работы

1 Назовите назначение шатуна.

Шатун предназначен для передачи усилия от поршня к коленчатому валу в такте расширения и в обратном направлении при вспомогательных тактах.

2 Для чего служит декомпрессионный механизм?

Декомпрессионный механизм служит для облегчения проворачивания коленчатого вала дизеля во время пуска.

3 Что такое такт двигателя?

Такт — это часть рабочего цикла двигателя, происходящая за время движения поршня от одной мертвой точки до другой.

4 Назовите основные механизмы и системы поршневого двигателя внутреннего сгорания и их назначения.

Поршневой двигатель внутреннего сгорания состоит из корпусных деталей, кривошипно-шатунного и газораспределительного механизмов, систем питания, охлаждения, смазочной, зажигания и пуска, регулятора частоты вращения.

Кривошипно-шатунный механизм преобразует прямолинейное возвратнопоступательное движение поршня во вращательное движение коленчатого вала и наоборот.

Механизм газораспределения предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и выпуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (в карбюраторном и газовом двигателях) или наполнения цилиндра воздухом и подачи в него топлива под высоким давлением (в дизельном двигателе и бензиновом двигателе с непосредственным впрыском).

Система охлаждения необходима для поддержания оптимального теплового режима двигателя.

Система смазки предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлаждения, защиты от коррозии и вымывания продуктов изнашивания.

Система зажигания предназначена для своевременного зажигания рабочей смеси электрической искрой в цилиндрах карбюраторного и газового двигателей.

Система пуска — это комплекс взаимодействующих механизмов и систем, обеспечивающих устойчивое начало протекания рабочего цикла в цилиндрах двигателя.

Регулятор частоты вращения — это автоматически действующий механизм, предназначенный для изменения подачи топлива или горючей смеси в зависимости от нагрузки двигателя.

5 Чем эконостат отличается от экономайзера?

Эконостат в отличие от экономайзера не имеет отдельного привода, а включается только под воздействием разряжения.

Приложение В

Примерные тестовые вопросы к зачету

Вопрос № 1

Верхняя мертвая точка – это

- а) верхняя точка двигателя
- б) крайнее верхнее положение поршня
- в) метка в верхней части поршня
- г) наиболее опасный для жизни участок двигателя

Вопрос № 2

Объем камеры сгорания – это

- а) объем, освобождаемый поршнем при его перемещении от верхней мертвой точки к нижней мертвой точке
- б) объем пространства над поршнем, находящимся в нижней мертвой точке
- в) сумма рабочих объемов всех цилиндров двигателя
- г) объем пространства над поршнем, находящимся в верхней мертвой точке

Вопрос № 3

Рабочий объем цилиндра – это

- а) объем, освобождаемый поршнем при его перемещении от верхней мертвой точки к нижней мертвой точке
- б) объем пространства над поршнем, находящимся в нижней мертвой точке
- в) сумма рабочих объемов всех цилиндров двигателя
- г) объем пространства над поршнем, находящимся в верхней мертвой точке

Вопрос № 4

Полный объем цилиндра - это

- а) объем, освобождаемый поршнем при его перемещении от верхней мертвой точки к нижней мертвой точке
- б) объем пространства над поршнем, находящимся в нижней мертвой точке
- в) сумма рабочих объемов всех цилиндров двигателя
- г) объем пространства над поршнем, находящимся в верхней мертвой точке

Вопрос № 5

Рабочий объем двигателя - это

- а) объем, освобождаемый поршнем при его перемещении от верхней мертвой точки к нижней мертвой точке
- б) объем пространства над поршнем, находящимся в нижней мертвой точке
- в) сумма рабочих объемов всех цилиндров двигателя
- г) объем пространства над поршнем, находящимся в верхней мертвой точке

Как называется нижняя часть поршня?

- а) Юбка
- б) Конус
- в) Трапеция
- г) Башмак

Вопрос № 7

Что такое бобышки?

- а) Неровности на поверхности блок-картера двигателя
- б) Гайки особой формы с прорезями для установки шплинта
- в) Приливы в поршне для установки поршневого пальца
- г) Канавки в головке поршня для установки поршневых колец

Вопрос № 8

Что представляет собой сечение шатуна?

- а) Двутавр
- б) Тавр
- в) Швеллер
- г) Круг

Вопрос № 9

Маховик необходим для

- а) Обеспечения равномерного вращения коленчатого вала
- б) Охлаждения двигателя при работе на больших оборотах
- в) Воспламенения горючей смеси
- г) Крепления шатуна

Вопрос № 10

Элементы коленчатого вала, соединяющие коренные и шатунные шейки, называются

- а) Крылья
- б) Локти
- в) Щеки
- г) Пятки

Вопрос № 11

Где расположены клапаны в газораспределительном механизме с верхним расположением клапанов?

- а) В блок-картере
- б) В головке цилиндров
- в) В крышке цилиндров
- г) В кривошипной камере

Где расположены клапаны в газораспределительном механизме с нижним расположением клапанов?

- а) В блок-картере
- б) В головке цилиндров
- в) В крышке цилиндров
- г) В кривошипной камере

Вопрос № 13

Двигатель с углом развала цилиндров 180⁰ называется

- а) Оппозитный
- б) Плоский
- в) Линейный
- г) Трубный

Вопрос № 14

Для чего предназначена смазочная система?

- а) Для уменьшения трения деталей двигателя
- б) Для охлаждения и коррозионной защиты деталей двигателя
- в) Для удаления продуктов износа с деталей двигателя
- г) Все ответы верны

Вопрос № 15

Какие системы охлаждения существуют?

- а) Циркуляционная
- б) Проточная
- в) Испарительная
- г) Все ответы верны

Вопрос № 16

Расширительный бачок в системе охлаждения применяют для

- а) Выравнивания давления в системе
- б) Удаления жидкости из системы
- в) Компенсации объема охлаждающей жидкости
- г) Поддержания необходимой температуры

Вопрос № 17

Рабочая смесь -это...

- а) Смесь воздуха и топлива
- б) Смесь воздуха, топлива и отработавших газов
- в) Смесь бензина и смазочного масла
- г) Смесь топлива и продуктов сгорания

Роторно-поршневой двигатель по-другому называется

- а) Двигатель Стирлинга
- б) Двигатель Ванкеля
- в) Двигатель Якоби
- г) Двигатель Фрезе

Вопрос № 19

Порядок работы цилиндров – это последовательность ...

- а) Чередования тактов в цилиндре
- б) Открытия впускного и выпускного клапанов в цилиндре
- в) Чередования рабочих ходов по цилиндрам двигателя
- г) Работы смесительных камер в карбюраторе

Вопрос № 20

Назовите правильную последовательность тактов четырехтактного ДВС

- а) выпуск сжатие рабочий ход впуск
- б) впуск сжатие рабочий ход выпуск
- в) выхлоп впуск сгорание рабочий ход
- г) сжатие впуск рабочий ход выхлоп

Вопрос № 21

За сколько оборотов коленчатого вала совершается полный цикл четырехтактного ДВС?

- а) за четыре
- б) за один
- в) за два
- г) за шесть

Вопрос № 22

За сколько оборотов коленчатого вала совершается полный цикл двухтактного ДВС?

- а) за один
- б) за два
- в) за четыре
- г) за шесть

Вопрос № 23

Смесительная камера в карбюраторе служит для

- а) Пропуска определенного количества бензина в распылитель
- б) Увеличения скорости потока воздуха в центре смесительной камеры
- в) Смешивания бензина с воздухом
- г) Регулирования количества горючей смеси, поступающей в цилиндры

Как расшифровать аббревиатуру ТНВД?

- а) Траектория направленного вращения деталей
- б) Тракторный навесной восьмицилиндровый двигатель
- в) Топливный насос высокого давления
- г) Тихоходный нестандартный вал двигателя

Вопрос № 25

Где в системе питания дизельного двигателя установлен фильтр тонкой очистки топлива?

- а) Между подкачивающим насосом и ТНВД
- б) Между топливным баком и подкачивающим насосом
- в) Между ТНВД и форсункой
- г) Все ответы неверны

Вопрос № 26

Где в системе питания дизельного двигателя установлен фильтр грубой очистки топлива?

- а) Между подкачивающим насосом и ТНВД
- б) Между топливным баком и подкачивающим насосом
- в) Между ТНВД и форсункой
- г) Все ответы неверны

Вопрос № 27

Где в системе питания карбюраторного двигателя наиболее часто устанавливают фильтр тонкой очистки топлива?

- а) Между подкачивающим насосом и карбюратором
- б) Между топливным баком и подкачивающим насосом
- в) Между карбюратором и цилиндром двигателя
- г) Все ответы неверны

Вопрос № 28

У какого двигателя, при прочих равных условиях, больше компрессионных колец?

- а) У дизельного
- б) У карбюраторного
- в) У инжекторного
- г) У газового

Вопрос № 29

Что такое «мокрая» гильза цилиндра?

- а) Гильза, работающая в масле
- б) Гильза, омываемая снаружи охлаждающей жидкостью
- в) Гильза, подвергшаяся закалке
- г) Гильза двигателя, работающего под водой

Для чего на передний конец коленчатого вала двигателя устанавливают храповик?

- а) Для привода вспомогательных механизмов
- б) Для проворачивания коленчатого вала рукояткой
- в) Для соединения с валом отбора мощности
- г) Для крепления муфты сцепления

Вопрос № 31

В каком соотношении находятся скорости вращения распределительного и коленчатого валов четырехтактного двигателя?

- а) Распределительный вал вращается в два раза быстрее коленчатого вала
- б) Распределительный вал вращается в два раза медленнее коленчатого вала
- в) Распределительный вал вращается в четыре раза медленнее коленчатого вала
- г) Валы вращаются с одинаковой скоростью

Вопрос № 32

С какой целью внутри поршневого пальца некоторых двухтактных двигателей выполнена перегородка?

- а) С целью повышения жесткости поршневого пальца
- б) С целью предотвращения прорыва горючей смеси в выпускной канал
- в) С целью обеспечения сбора масла со стенок цилиндра
- г) Все ответы неверны

Вопрос № 33

С какой целью в некоторых двигателях разъем нижней головки выполнен под углом к оси шатуна?

- а) C целью повышения технологичности и снижения стоимости конструкции шатуна
- б) С целью повышения надежности болтового соединения шатуна
- в) С целью обеспечения установки комплекта поршня с шатуном через цилиндр
- г) С целью обеспечения вращения шатуна без задевания за нижнюю кромку цилиндра

Вопрос № 34

Взаимозаменяемы ли крышки шатунов?

- а) Да
- б) Нет
- в) Да, для большинства двигателей
- г) В зависимости от точности их изготовления

У какого двигателя, при прочих равных условиях, выше степень сжатия?

- а) У дизельного
- б) У карбюраторного
- в) У инжекторного
- г) У газового

Вопрос № 36

Сколько оборотов делает распределительный вал четырехтактного двигателя за один цикл?

- а) Один
- б) Два
- в) Три
- г) Четыре

Вопрос № 37

Как называется полость для охлаждающей жидкости между стенками цилиндров и наружными стенками двигателя?

- а) Рубашка
- б) Шуба
- в) Шапка
- г) Подклад

Вопрос № 38

Какой ремень используется для привода распределительного вала в случае его верхнего расположения?

- а) Плоский
- б) Клиновой
- в) Зубчатый
- г) Круглый

Вопрос № 39

Для чего в системе охлаждения двигателя применяют жалюзи?

- а) Для дозирования потока охлаждающей жидкости, проходящего через термостат
- б) Для регулирования потока воздуха, проходящего через радиатор
- в) Для ограничения потока света, падающего на радиатор
- г) Для защиты радиатора от попадания камней и мелких предметов

Вопрос № 40

Как называют горючую смесь с коэффициентом избытка воздуха $\alpha = 1,4$?

- а) Бедная
- б) Богатая
- в) Нормальная
- г) Сбалансированная

Как называют горючую смесь с коэффициентом избытка воздуха $\alpha = 0.8$?

- а) Бедная
- б) Богатая
- в) Нормальная
- г) Сбалансированная

Вопрос № 42

Чем смазываются плунжерные пары в процессе работы?

- а) Маслом
- б) Топливом
- в) Графитом
- г) Плунжерные пары не смазываются

Вопрос № 43

Какую часть мощности двигателя потребляет вентилятор воздушной системы охлаждения?

- a) 8%
- б) 23%
- в) 52%
- г) 86%

Вопрос № 44

Горючая смесь -это...

- а) Смесь воздуха и топлива
- б) Смесь воздуха, топлива и отработавших газов
- в) Смесь бензина и смазочного масла
- г) Смесь топлива и продуктов сгорания

Вопрос № 45

Что такое ход поршня?

- а) Расстояние между мертвыми точками, проходимое поршнем в течение одного такта
- б) Суммарное расстояние, проходимое поршнем за весь цикл двигателя
- в) Суммарное расстояние, проходимое поршнем за определенный отрезок работы двигателя
- г) Показатель, характеризующий быстроходность двигателя

Что такое степень сжатия?

- а) Отношение хода поршня к диаметру цилиндра
- б) Отношение полного объема цилиндра к объему камеры сгорания
- в) Отношение рабочего объема цилиндра к объему камеры сгорания
- г) Отношение объема камеры сгорания к объему кривошипной камеры

Вопрос № 47

Короткоходным называют двигатель, у которого

- а) Отношение хода поршня к диаметру цилиндра меньше или равно единице
- б) Отношение хода поршня к диаметру цилиндра больше или равно единице
- в) Отношение хода поршня к диаметру цилиндра больше единицы
- г) Ход поршня составляет менее 100 мм

Вопрос № 48

Для чего предназначена этиловая жидкость, добавляемая в бензин?

- а) Для увеличения октанового числа бензина
- б) Для улучшения процесса горения
- в) Для увеличения скорости распространения пламени
- г) Для улучшения самовоспламеняемости бензина

Вопрос № 49

Чем отличается горючая смесь от рабочей?

- а) Рабочая смесь содержит не только топливо и воздух, но и остаточные газы
- б) В рабочей смеси содержится больше остаточных газов, чем в горючей смеси
- в) В составе рабочей смеси отсутствует воздух
- г) Эти смеси равноценны

Вопрос № 50

Что характеризует октановое число?

- а) Детонационную стойкость дизельного топлива
- б) Стойкость против преждевременного возгорания бензина
- в) Детонационную стойкость бензина
- г) Свойства самовоспламеняемости бензина

Маршалов Эдуард Сергеевич

КОНСТРУКЦИИ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Методические указания к самостоятельной работе студентов по дисциплинам «Энергетические установки», «Энергетические установки автомобилей и тракторов», студентов всех форм обучения направления подготовки «Наземные транспортно-технологические комплексы» и специальности «Наземные транспортно-технологические средства»

Редактор Е.Ф. Изотова

Подписано к печати 02.12.17. Формат 60х84 1/16. Усл. печ. л.1,62. Тираж 25 экз. Зак. 171643. Рег. № 27.

Отпечатано в ИТО Рубцовского индустриального института АлтГТУ 658207, Рубцовск, ул. Тракторная, 2/6.