

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный технический университет им. И.И. Ползунова» (РИИ АлтГТУ)

И.В. КУРСОВ

ЛАБОРАТОРНЫЕ РАБОТЫ

Методические указания по выполнению лабораторных работ по дисциплине «Сопротивление материалов» для студентов направления подготовки «Наземные транспортно-технологические комплексы»

Курсов И.В. Лабораторные работы: Методические указания по выполнению лабораторных работ по дисциплине «Сопротивление материалов» для студентов направления подготовки «Наземные транспортно-технологические комплексы» / И.В. Курсов; Рубцовский индустриальный институт. - Рубцовск. 2021. - 11 с. [ЭР].

Содержат методические указания по выполнению студентами направления подготовки «Наземные транспортно-технологические комплексы» лабораторных работ по дисциплине «Сопротивление материалов».

Рассмотрены и одобрены на заседании каф. НТС РИИ. Протокол № 8 от 30.03.2021

Содержание

Введение	4
1 Основные положения по проведению лабораторных работ	5
2. Лабораторные работы	6
2.1. Лабораторная работа №1. Определение перемещений в балке при	
изгибе	6
2.2. Лабораторная работа №2. Определение напряжений и перемещений	
в балке при косом изгибе	8
Список рекомендуемой литературы	10
Приложение А. Образец титульного листа отчета о лабораторной	
работе	11

Введение

Настоящие методические указания представляет собой сборник заданий к лабораторным работам по дисциплине «Сопротивление материалов» направления подготовки 23.03.02 «Наземные транспортно-технологические комплексы».

Основной целью проведения лабораторных работ по дисциплине «Сопротивление материалов» является расширение, углубление закрепление знаний, полученных на теоретических и практических занятиях, приобретение практического опыта, умение самостоятельно получать показатели, необходимые для инженерных расчетов.

В указанные методические указания включены следующие лабораторные работы:

- 1 Определение перемещений в балке при изгибе.
- 2 Определение напряжений и перемещений в балке при косом изгибе.

Образец титульного листа приведен в приложении А.

1 Основные положения по проведению лабораторных работ

- 1.1 Подготовка к выполнению лабораторных работ
- 1.1.1 К выполнению лабораторных работ допускаются студенты, прошедшие инструкции по ТБ и ПБ в условиях лаборатории с отметкой в журнале по ТБ и ПБ.
- 1.1.2 Студентам необходимо ознакомиться с заданием, порядком выполнения работы и указаниями к составлению отчета.
 - 1.2 Общий порядок выполнения лабораторной работы
- 1.2.1 Используя плакаты, учебную литературу и конспекты лекций изучить назначения, конструкции, устройство, работу, регулировки механизмов, систем, приборов, указанных в задании к лабораторным работам.
 - 1.2.2 Составить отчет по лабораторной работе.
 - 1.2.3 Ответить на контрольные вопросы.
 - 1.3 Общие указания к составлению отчета по лабораторной работе.
 - 1.3.1 В отчете указать цель и задания к работе.
- 1.3.2 Образец титульного листа отчета о лабораторной работе приведен в приложении А.

2 Лабораторные работы

2.1 Лабораторная работа №1. Определение перемещений в балке при изгибе

І. Задачи испытания.

Определение экспериментальным путем величин прогибов и углов поворота некоторых сечений балки и сравнение полученных величин перемещений с их теоретическими значениями.

II. Оборудование, технические средства, инструмент.

	Hp	именя	ется с	пециал	пьная	устан	овка, (схема	котор	ой пок	азана	на рису	унке
1													
1													

Рисунок 1- Лабораторная установка

III. Данные опыта и его результаты

Геометрические и механические характеристики балки

Длина балки,	Длина участка	Длины рычагов,	Размеры поперечного	
MM	балки, мм	MM	сечения, мм	
l =	a =	$r_{I} =$	b =	
		$r_2=$	h =	

Осевой момент инерции
$$J_x = \frac{bh^3}{12}$$

Материал балки – сталь $E = 2 \cdot 10^5 \, \text{М} \Pi \text{a}$

Цена деления приборов – 0,01 мм

Опытное значение прогиба сечения $\,C\,$ от нагрузки $\,\Delta F = 10\,\,H\,$ $\,w_{C}^{\,{\rm on}} = \Delta n_{1,cp}$

Опытное значение углов поворота торцевых сечений балок от нагрузки F:

$$\varphi_A^{on} = \frac{n_{3cp}}{r_1}$$
$$\varphi_B^{on} = \frac{n_{2cp}}{r_2}$$

Теоретический расчет перемещений.

$$w_C^{meop} = -\frac{Fa^2(l-a)^2}{3EJ_x l}$$

$$\varphi_A^{meop} = \frac{Fa(l-a)(2l-a)}{6EJ_x l}$$

$$\varphi_B^{meop} = \frac{Fa^2(l-a)}{6EJ_x l}$$

Расхождение опытных и расчетных результатов:

$$\frac{w_C^{meop} - w_C^{on}}{w_C^{meop}} \bullet 100\%$$

$$\frac{\varphi_A^{meop} - \varphi_A^{on}}{\varphi_A^{meop}} \bullet 100\%$$

$$\frac{\varphi_B^{meop} - \varphi_B^{on}}{\varphi_B^{meop}} \bullet 100\%$$

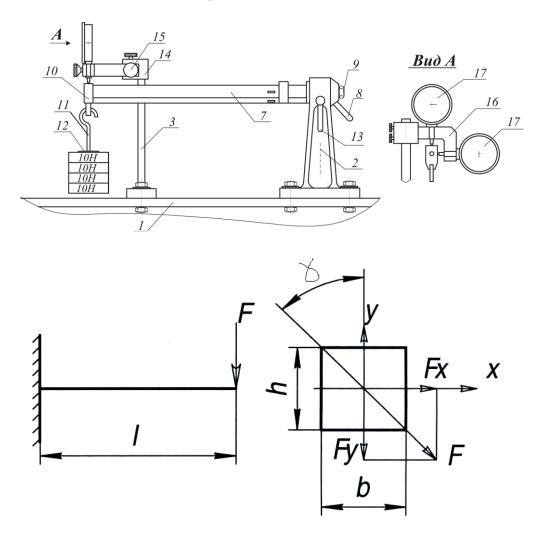
Результаты измерений и вычислений занести в таблицу

Нагрузка				Эксп	ериме	ентал	Теор	етиче	еские	Pac	хожде	ние
F,H	Показатели		ьные значения		значения		опытных и		хи			
	индикаторов		перемещений		перемещений			расчетных				
								результатов				
	$n_{1,}$	n ₂ ,	n ₃ ,	$W_C^{O\Pi}$	$arphi_A^{on}$	$arphi_B^{on}$	W_C^{meop}	$arphi_A^{meop}$	$arphi_B^{meop}$	Δw_C	$\Delta arphi_{\scriptscriptstyle A}$	$\Delta arphi_{\scriptscriptstyle B}$
	MM	MM	MM									
0												
10												
20												
30												
40												

IV. Выводы

V.Контрольные вопросы

- 1. Какие перемещения получают поперечные сечения балок при прямом изгибе?
 - 2. Что представляет собой прямой поперечный изгиб?
- 3. По каким формулам определяются поперечные силы и изгибающие моменты в поперечных сечениях стержня?


2.2. Лабораторная работа №2 Определение напряжений и перемещений в балке при косом изгибе

І. Задачи испытания.

Сравнение теоретических значений прогиба свободного конца балки с экспериментальными данными.

II. Оборудование, технические средства, инструмент.

Стенд СМ - 1, индикаторы

III. Данные опыта и его результаты

Размеры поперечного сечения

Длина *1*=

Размеры поперечного сечения

$$b = h =$$

Модуль упругости материала балки (сталь): $E = 2 \cdot 10^5 \, \text{Мпа}$ Осевые моменты инерции поперечного сечения балки

$$J_x = \frac{bh^3}{12} =$$

$$J_y = \frac{hb^3}{12} =$$

Угол наклона главной оси стержня: $\gamma =$

Экспериментальное определение полного прогиба определяем по формуле

$$\delta_{_{\mathcal{H}CR}} = \sqrt{\delta_{_{\mathcal{E}OP_{CP}}}^2 + \delta_{_{\mathit{BEP_{CP}}}}^2}$$

где $\delta_{\it cop_{\it cp}}$, $\delta_{\it eep_{\it cp}}$ соответственно, значения показаний горизонтального ($\it cop$) и вертикального ($\it eep$) индикаторов.

Теоретический расчет полного прогиба

$$\delta_{meop} = \sqrt{u^2 + v^2}$$

где u и v значения прогибов по осям, которые определяем по формулам

$$u = \frac{F_y \cdot l^3}{3EJ_x} = \frac{F\cos\gamma \cdot l^3}{3EJ_x}$$
$$v = \frac{F_z \cdot l^3}{3EJ_y} = \frac{F\sin\gamma \cdot l^3}{3EJ_y}$$

Расхождение опытных и расчетных результатов:

$$\Delta_{npos} = \frac{\delta_{meop} - \delta_{skcn}}{\delta_{meop}} \cdot 100\%$$

Результаты измерений и вычислений занести в таблицу

1 csysibiation is medelinin in bio intesternin surfection in the same									
Нагрузка			Эксперимент	Теорети	ческие	Теоретичес	Расхождение		
F,H	Показатели индикаторов		Показатани		альные	значе	ения	кие	опытных и
			значения	прогибов	по осям	значения	расчетных		
			полного			полного	результатов		
			прогиба			прогиба			
	бвер	δ^{rop}	$\delta_{_{\mathfrak{K}Cn}}$	и	v	$\delta_{\it meop}$	Δ_{npor}		
0									
10									
20									
30									
40									

IV. Выводы

V. Контрольные вопросы

- 1. Какой изгиб называется косым?
- 2. Может ли балка круглого поперечного сечения испытывать косой изгиб?
- 3. Сочетанием каких видов изгибов считается косой изгиб?

Список рекомендуемой литературы

- 1. Курсов И.В. Самостоятельная работа: Методические рекомендации по выполнению самостоятельной работы по дисциплине «Сопротивление материалов» для студентов направления подготовки «Наземные транспортнотехнологические комплексы»/Курсов И.В.; РИИ.- Рубцовск: 2021. 11 с.
- 2. Сопротивление материалов : учебник / П. А. Павлов, Л. К. Паршин, Б. Е. Мельников, В. А. Шерстнев ; под редакцией Б. Е. Мельникова. 5-е изд., стер. Санкт-Петербург : Лань, 2019. 556 с. ISBN 978-5-8114-4208-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/116013 (дата обращения: 29.03.2021). Режим доступа: для авториз. пользователей.
- 3. Сборник задач по сопротивлению материалов : учебное пособие / Н. М. Беляев, Л. К. Паршин, Б. Е. Мельников, В. А. Шерстнев ; под редакцией Л. К. Паршина. 5-е изд., стер. Санкт-Петербург : Лань, 2017. 432 с. ISBN 978-5-8114-0865-8. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/91908 (дата обращения: 29.03.2021). Режим доступа: для авториз. пользователей.
- 4. Межецкий, Г.Д. Сопротивление материалов : учебник / Г.Д. Межецкий, Г.Г. Загребин, Н.Н. Решетник. 5-е изд. Москва : Дашков и К°, 2016. 432 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=453911 (дата обращения: 29.03.2021). Библиогр. в кн. ISBN 978-5-394-02628-7. Текст : электронный.
- 5. Кузьмин, Л. Ю. Сопротивление материалов / Л. Ю. Кузьмин, В. Н. Сергиенко, В. К. Ломунов. 2-е изд., испр. и доп. Санкт-Петербург: Лань, 2016. 228 с. ISBN 978-5-8114-2056-8. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/90004 (дата обращения: 29.03.2021). Режим доступа: для авториз. пользователей.

Приложение

Приложение **A** Образец титульного листа отчета о лабораторной работе

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Рубцовский индустриальный институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный технический университет им. И.И. Ползунова» (РИИ АлтГТУ)

Технический факультет Кафедра «Наземные транспортные системы»							
	Отчет О лабораторной работе №						
Работу выполнил студент группы							
	подпись, дата	и.о. фамилия					
Работу принял							
должность ученое звание	подпись дата	и.о. фамилия					