

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Рубцовский индустриальный институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный технический университет им. И.И. Ползунова» (РИИ АлтГТУ)

Г.А. КИРИЛЛОВА

МАТЕМАТИКА

(часть 2)

Методическое пособие и варианты заданий для студентов специальности «Информационные системы и программирование»

УДК [519.2; 512.1; 514.11; 517.1]

Математика (часть 2): Методическое пособие и варианты заданий для студентов специальности «Информационные системы и программирование»

/Составитель Кириллова Г.А., Рубцовский индустриальный институт. – Руб-

цовск, 2022. -47 с.

В пособии рассмотрены различные методы решения задач по математике,

поясняющие основные теоретические положения, приведены тестовые задачи,

используемые при собеседовании. Задачи подобраны в соответствии с про-

граммой по математике для СПО.

Пособие предполагает использование для самостоятельной подготовки к

экзаменам и для планомерного повторения нужного материала.

Рассмотрено и одобрено на заседании

кафедры ПМ Рубцовского индустри-

ального института.

Протокол № 5 от 22.12.2022.

Рецензент:

Э.С. Маршалов

© Рубцовский индустриальный институт, 2022

2

СОДЕРЖАНИЕ

1. ТРИГОНОМЕТРИЯ	4
1.1. Преобразования тригонометрических выражений	5
1.2. Тригонометрические уравнения	7
2. ПЛАНИМЕТРИЯ	15
2.1. Треугольники и четырехугольники	15
2.2. Окружность	17
2.3. Площади плоских фигур	18
4.4. Примеры решения задач	20
3. СТЕРЕОМЕТРИЯ	22
3.1. Примеры решения задач	30
3.2. Примеры тестовых задач	31

1. ТРИГОНОМЕТРИЯ

Формулы для справок

Формулы сложения и вычитания:

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta; \qquad \cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta;$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta; \qquad \cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta;$$

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta}; \qquad tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}.$$

Формулы двойных, тройных и половинных углов:

$$\sin 2\alpha = 2\sin \alpha \cos \alpha; \qquad \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1;$$

$$tg 2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}; \quad ctg 2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha};$$

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha; \quad \cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha;$$

$$tg 3\alpha = \frac{3tg\alpha - tg^3\alpha}{1 - 3tg^2\alpha}; \quad ctg 3\alpha = \frac{ctg^3\alpha - 3ctg\alpha}{3ctg^2\alpha - 1};$$

$$tg \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} = \frac{\sin\alpha}{1 + \cos\alpha} = \frac{1 - \cos\alpha}{\sin\alpha};$$

$$ctg \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{1 - \cos\alpha}} = \frac{\sin\alpha}{1 - \cos\alpha} = \frac{1 + \cos\alpha}{\sin\alpha}.$$

Преобразование тригонометрических выражений к виду, удобному для логарифмирования:

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}; \qquad \sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2};$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2};$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} = 2\sin \frac{\alpha + \beta}{2}\sin \frac{\beta - \alpha}{2};$$

$$tg\alpha \pm tg\beta = \frac{\sin(\alpha \pm \beta)}{\cos\alpha\cos\beta}; \quad ctg\alpha \pm ctg\beta = \frac{\sin(\beta \pm \alpha)}{\sin\alpha\sin\beta};$$
$$1 + \cos\alpha = 2\cos^{2}\frac{\alpha}{2}; \quad 1 - \cos\alpha = 2\sin^{2}\frac{\alpha}{2};$$
$$1 - tg^{2}\alpha = \frac{\cos 2\alpha}{\cos^{2}\alpha}; \quad 1 - ctg^{2}\alpha = -\frac{\cos 2\alpha}{\sin^{2}\alpha}.$$

Некоторые важные соотношения:

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)];$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)];$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)].$$

$$\sin \alpha = \frac{2tg\frac{\alpha}{2}}{1 + tg^2\frac{\alpha}{2}}; \quad \cos \alpha = \frac{1 - tg^2\frac{\alpha}{2}}{1 + tg^2\frac{\alpha}{2}}; \quad tg\alpha = \frac{2tg\frac{\alpha}{2}}{1 - tg^2\frac{\alpha}{2}}.$$

$$\cos 3\alpha = \cos^3 \alpha - 3\cos\alpha\sin^2 \alpha;$$

$$\sin 3\alpha = 3\cos^2 \alpha \sin\alpha - \sin^3 \alpha.$$

1.1. Преобразования тригонометрических выражений

Пример 1. Вычислить ctg 75⁰.

Решение.

Первый способ:

$$ctg 75^{0} = \frac{\cos(45^{0} + 30^{0})}{\sin(45^{0} + 30^{0})} = \frac{\cos 45^{0} \cdot \cos 30^{0} - \sin 45^{0} \cdot \sin 30^{0}}{\sin 45^{0} \cdot \cos 30^{0} + \cos 45^{0} \cdot \sin 30^{0}} = \frac{\cos 30^{0} - \sin 30^{0}}{\cos 30^{0} + \cos 30^{0}} = \frac{\cos 30^{0} - \sin 30^{0}}{\cos 30^{0} + \cos 30^{0}} = \frac{\cos 30^{0} - \sin 30^{0}}{\cos 30^{0} + \cos 30^{0}} = \frac{\cos 30^{0} - \sin 30^{0}}{\cos 30^{0} + \cos 30^{0}} = \frac{\cos 30^{0} - \cos 30^{0}}{\cos 30^{0} + \cos 30^{0}} = \frac{\cos 30^{0} - \cos 30^{0}}{\cos 30^{0} + \cos 30^{0}} = \frac{\cos 30^{0} - \cos 30^{0}}{\cos 30^{0} + \cos 30^{0}} = \frac{\cos 30^{0}$$

Второй способ:

$$ctg 75^{0} = ctg \frac{150^{0}}{2} = \frac{1 + \cos 150^{0}}{\sin 150^{0}} = \frac{1 - \cos 30^{0}}{\sin 30^{0}} = 2 - \sqrt{3}.$$

Ombem: $2 - \sqrt{3}$.

Пример 2. Вычислить значение выражения

$$\frac{1}{\sin\frac{\pi}{18}} - \frac{\sqrt{3}}{\cos\frac{\pi}{18}}.$$

Решение:

$$\frac{1}{\sin 10^{0}} - \frac{\sqrt{3}}{\cos 10^{0}} = \frac{\cos 10^{0} - \sqrt{3} \sin 10^{0}}{\sin 10^{0} \cdot \cos 10^{0}} = \frac{\frac{1}{2} \cos 10^{0} - \frac{\sqrt{3}}{2} \sin 10^{0}}{\frac{1}{4} \sin 20^{0}} = \frac{\sin 30^{0} \cdot \cos 10^{0} - \cos 30^{0} \cdot \sin 10^{0}}{\frac{1}{4} \sin 20^{0}} = 4 \frac{\sin (30^{0} - 10^{0})}{\sin 20^{0}} = 4.$$

Ответ: 4.

Пример 3. Доказать неравенство $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ} = \frac{1}{8}$.

Доказательство:

$$\cos 20^{0} \cdot \cos 40^{0} \cdot \cos 80^{0} = \frac{(\sin 20^{0} \cdot \cos 20^{0}) \cdot \cos 40^{0} \cdot \cos 80^{0}}{\sin 20^{0}} =$$

$$= \frac{1}{2} \frac{(\sin 40^{0} \cdot \cos 40^{0}) \cdot \cos 80^{0}}{\sin 20^{0}} = \frac{1}{4} \cdot \frac{\sin 80^{0} \cdot \cos 80^{0}}{\sin 20^{0}} =$$

$$= \frac{1}{8} \cdot \frac{\sin 160^{0}}{\sin 20^{0}} = \frac{1}{8} \cdot \frac{\sin 20^{0}}{\sin 20^{0}} = \frac{1}{8}.$$

Пример 4. Вычислить значение выражения

$$\frac{\arccos\left(-\frac{1}{2}\right)}{\arccos\frac{1}{2}}.$$

Решение. $\arcsin \frac{1}{2} = \frac{\pi}{3}$. В силу формулы $\arccos(-x) = \pi - \arccos x$ имеем

$$\arccos\left(-\frac{1}{2}\right) = \pi - \arccos\frac{1}{2} = \pi - \frac{\pi}{3} = \frac{2}{3}\pi. \text{ Поэтому } \frac{\arccos\left(-\frac{1}{2}\right)}{\arccos\frac{1}{2}} = \frac{\frac{2\pi}{3}}{\frac{\pi}{3}} = 2.$$

Ответ: 2.

Пример 5. Вычислить $\cos(2\arcsin\frac{2}{3})$.

Решение. В силу формулы $\cos 2\alpha = \cos^2 2\alpha - \sin^2 \alpha$ имеем

$$\cos(2\arcsin\frac{2}{3}) = \cos^2(\arcsin\frac{2}{3}) - \sin^2(\arcsin\frac{2}{3}) = \left(\sqrt{1 - \left(\frac{2}{3}\right)^2}\right)^2 - \left(\frac{2}{3}\right)^2 = 1 - \frac{4}{9} - \frac{4}{9} = \frac{1}{9}.$$

Omsem: $\frac{1}{9}$.

1.2. Тригонометрические уравнения

Уравнения вида

$$P(\cos x \pm \sin x; \sin x \cdot \cos x) = 0,$$

где P(y; z) – многочлен, решаются заменой

$$\cos x \pm \sin x = t$$
,

откуда

$$1 \pm 2\sin x \cdot \cos x = t^2.$$

Рассмотрим соответствующий пример.

Пример 6. Решить уравнение $\sin x + \cos x = 1 + \sin x \cdot \cos x$.

Решение. Обозначим $\sin x + \cos x = t$, откуда $1 + 2\sin x \cdot \cos x = t^2$. Наше исходное уравнение принимает вид:

$$t=1+\frac{t^2-1}{2} \implies t^2-2t+1=0 \implies t=1.$$

Мы получили уравнение

$$\sin x + \cos x = 1$$
.

Его можно решать разными способами, как было показано выше. Применяя формулы двойного аргумента, получим:

$$2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^2\frac{x}{2} - \sin^2\frac{x}{2} = \cos^2\frac{x}{2} + \sin^2\frac{x}{2}$$

или

$$2\sin\frac{x}{2}\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right) = 0.$$

Имеем $\sin \frac{x}{2} = 0$, откуда $\frac{x}{2} = \pi n$, $x = 2\pi n$. Имеем далее: $\cos \frac{x}{2} = \sin \frac{x}{2}$, отку-

да
$$\frac{x}{2} = \frac{\pi}{4} + \pi k$$
, $x = \frac{\pi}{2} + 2\pi n$.

Omsem: $x = \pi n$; $x = \frac{\pi}{2} + 2\pi n$.

Пример 7. Решить уравнение

$$\sin^4 2x + \cos^4 2x = \sin 2x \cdot \cos 2x.$$

Решение.

$$(\sin^2 2x + \cos^2 2x)^2 - 2\sin^2 2x \cdot \cos^2 2x = \sin 2x \cdot \cos 2x$$
.

Обозначим $\sin 2x \cdot \cos 2x = y$. Получим

 $1-2y^2 = y \Rightarrow 2y^2 + 1 - 1 = 0 \Rightarrow \Rightarrow y_1 = -1, y_2 = \frac{1}{2}$. Возвращаясь к x, полу-

чим $\sin 2x \cdot \cos 2x = -1 \Rightarrow \sin 4x = -2$. Уравнение не имеет решений.

$$\sin 2x \cdot \cos 2x = \frac{1}{2} \Rightarrow \sin 4x = 1 \Rightarrow 4x = \frac{\pi}{2} + 2\pi n.$$

Omsem: $x = \frac{\pi}{8} + \frac{\pi}{2}n$.

Пример 8. Решить уравнение

$$\sqrt{1-\cos x} = \sin x$$

при условии $x \in [\pi; 3\pi]$.

Решение. Возведем обе части уравнения в квадрат, учитывая, что они неотрицательны:

$$1 - \cos x = \sin^2 x \Rightarrow \cos^2 x - \cos x = 0 \Rightarrow \cos x(\cos x - 1) = 0.$$

1) $\cos x = 0$, $x = \frac{\pi}{2} + \pi n$. Но так как $\sin x \ge 0$, $x \in [\pi; 3\pi]$, имеем единственное значение $x = \frac{5}{2}\pi$.

2) $\cos x = 1$, $x = 2\pi n$. В силу условия $x \in [\pi; 3\pi]$ имеем $x = 2\pi$.

Omsem: 2π ; $\frac{5}{2}\pi$.

Пример 9. Решить уравнение

$$\left(\cos\frac{x}{4} - 2\sin x\right)\sin x + \left(1 + \sin\frac{x}{4} - 2\cos x\right)\cos x = 0.$$

Решение. Раскрывая скобки, получим

$$\left(\sin x \cdot \cos \frac{x}{4} + \cos x \cdot \sin \frac{x}{4}\right) - 2\sin^2 x - 2\cos^2 x + \cos x = 0;$$

$$\sin\left(x + \frac{x}{4}\right) - 2 + \cos x = 0;$$

$$\sin\left(\frac{5}{4}x\right) + \cos x = 2.$$

Так как функции $\sin\left(\frac{5}{4}x\right)$ и $\cos x$ имеют наибольшее значение 1, то их сумма равна 2, если одновременно выполняются соотношения:

$$\begin{cases} \sin\left(\frac{5x}{4}\right) = 1 \\ \cos x = 1 \end{cases} \Rightarrow \begin{cases} \frac{5x}{4} = \frac{\pi}{2} + 2\pi n \\ x = 2\pi k \end{cases} \Rightarrow \begin{cases} x = \frac{\pi}{5}(2 + 8n) \\ x = 2\pi k \end{cases}.$$

Мы получили $\frac{\pi}{5}(2+8n)=2\pi k$, откуда $k=\frac{4n+1}{5}$. Число $\frac{4n+1}{5}$ является целым лишь при $n=5t+1; t\in Z$. Отсюда $k=\frac{4(5t+1)+1}{5}=4t+1$. Подставляя k=4t+1 в выражение $x=2\pi k$, получаем:

Ombem: $x = 2\pi(4t+1), t \in \mathbb{Z}$.

Пример 10. Найти все решения уравнения

$$4^{\cos 2x} + 4^{\cos^2 x} = 3,$$

принадлежащие отрезку $\left\lceil \frac{3}{4};1 \right\rceil$.

Решение. Перепишем исходное уравнение в виде

$$4^{2\cos^2 x - 1} + 4^{\cos^2 x} = 3.$$

Обозначив $4^{\cos^2 x} = t, t > 0$, будем иметь уравнение $\frac{1}{4}t^2 + t - 3 = 0 \Rightarrow t^2 + 4t - 12 = 0$. Это уравнение имеет корни $t_1 = -6, t_2 = 2$. Так как t > 0, то получаем t = 2. Следовательно, $4^{\cos^2 x} = 2 \Rightarrow \cos^2 x = \frac{1}{2} \Rightarrow \cos x = \pm \frac{\sqrt{2}}{2}$. Имеем общее решение $x = \frac{\pi}{4} + \frac{\pi}{2}k$. Отрезку $\left[\frac{3}{4};1\right]$ принадлежит лишь $x = \frac{\pi}{4}$.

Ombem: $\frac{\pi}{4}$.

Пример 10. Решить уравнение

$$\frac{1 + tgx + tg^2x + \dots}{1 - tgx + tg^2x - \dots} = 1 + \sin 2x$$

при условии, что |tgx| < 0.

Решение. Применим формулу суммы членов бесконечной прогрессии $S = \frac{a_1}{1-q}, \ \text{где} \ |\ q\ | < 1. \ \text{Получим:}$

$$\frac{1}{1 - tgx} : \frac{1}{1 + tgx} = 1 + \frac{2tgx}{1 + tg^2x}.$$

Замена tgx=у приводит нас к уравнению

$$\frac{1+y}{1-y} = 1 + \frac{2y}{1+y^2} \Rightarrow \frac{1+y}{1-y} = \frac{(1+y)^2}{1+y^2}.$$

Так как |q|<1, то $1+y\neq 0$. Сокращая обе части полученного уравнения на 1+y, получим:

$$\frac{1}{1-y} = \frac{1+y}{1+y^2} \Rightarrow 1+y^2 = 1-y^2 \Rightarrow y=0 \Rightarrow tgx = 0.$$

Ombem: $x = \pi n$.

Пример 12. Решить уравнение

$$2\sin^2 x - 3\cos x = 0.$$

Решение. Подстановкой $\sin^2 x = 1 - \cos^2 x$ это уравнение сводится к квадратному уравнению относительно $\cos x$: $2\cos^2 x - 3\cos x - 2 = 0$. Так как $\cos x \neq 2$, то остается уравнение $\cos x = \frac{1}{2}$, откуда следует: $x = \pm 60^{\circ} + 360^{\circ} \cdot n$.

Ombem: $x = \pm 60^{\circ} + 360^{\circ} \cdot n$.

Пример 13. Решить уравнение

$$2\sin x \cdot \cos x + 5\cos^2 x = 4.$$

Решение. Правую часть уравнения представим в виде $4\cos^2 x + 4\sin^2 x$. Разделив почленно на $\cos^2 x$ однородное уравнение $4\sin^2 x - 2\sin x \cdot \cos x - \cos^2 x = 0$, получим квадратное уравнение относительно tgx: $4tg^2x - 2tg - 1 = 0$. Решая квадратное уравнение, получаем: $tgx = \frac{1 \pm \sqrt{5}}{4}$.

Omsem:
$$x = arctg \frac{\sqrt{5} + 1}{4} + 180^{\circ} n$$
; $x = -arctg \frac{\sqrt{5} - 1}{4} + 180^{\circ} n$.

Пример 14. Решить уравнение

$$2\sin x + 2\cos x + \sin 2x + 1 = 0$$
.

Решение. Левую часть данного уравнения удается разложить на множители:

$$2(\sin x + \cos x) + (\cos^2 x + \sin^2 x + 2\sin x \cdot \cos x) = 0;$$

$$2(\sin x + \cos x) + (\cos x + \sin x)^2 = 0;$$

$$(\sin x + \cos x) \cdot (2 + \sin x + \cos x) = 0.$$

Уравнение $\cos x + \sin x + 2 = 0$ не имеет корней. Следовательно, имеем однородное уравнение $\cos x + \sin x = 0$. Почленным делением на $\cos x$ получаем $\cos x + \sin x = 0$.

Omeem: $x = -45^{\circ} + 180^{\circ} n$.

Пример 15. Решить уравнение

$$\sin 3x \cdot \sin 2x = \sin 11x \cdot \sin 10x$$
.

Решение. Преобразуя произведения в суммы, получим $\frac{1}{2}(\cos x - \cos 5x) = \frac{1}{2}(\cos x - \cos 21x)$, откуда следует, что $\cos 5x - \cos 21x = 0$. Представляя разность косинусов в виде произведения, разлагаем левую часть уравнения на множители: $\sin 13x \cdot \sin 8x = 0$.

Omsem:
$$x = \frac{\pi n}{13}$$
; $x = \frac{\pi n}{8}$.

Пример 16. Решить уравнение

$$\sin x + \sqrt{3}\cos x = 2.$$

Решение. Первый способ. Разделим обе части уравнения на 2: $\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x = 1.$ Так как $\frac{1}{2} = \cos 60^{\circ}$, $\frac{\sqrt{3}}{2} = \sin 60^{\circ}$, то введем вспомогательный угол $\varphi = 60^{\circ}$. Тогда данное уравнение можно записать в виде $\cos \varphi \cdot \sin x + \sin \varphi \cdot \cos x = 1$ или, короче, $\sin(x + \varphi) = 1$. Отсюда получаем $x + \varphi = 90^{\circ} + 360^{\circ}n$.

Omsem: $x = 30^{\circ} + 360^{\circ} n$.

Замечание. Рассмотренным способом можно решать уравнения вида

$$a\sin x + b\cos x = c$$
,

где $c^2 < a^2 + b^2$.

Почленным делением на $\sqrt{a^2+b^2}$ получаем

$$\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}}.$$

Так как $\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2+b^2}}\right)^2 = 1$, то можем положить: $\frac{a}{\sqrt{a^2+b^2}} = \cos \varphi$,

$$\frac{b}{\sqrt{a^2+b^2}} = \sin \varphi$$
, тогда получим $\cos \varphi \cdot \sin x + \sin \varphi \cdot \cos x = \frac{c}{\sqrt{a^2+b^2}}$, т.е.

$$\sin(x+\varphi) = \frac{c}{\sqrt{a^2+b^2}}.$$

Второй способ.

Применив формулы двойного аргумента, запишем данное уравнение в виде

$$2\sin\frac{x}{2} \cdot \cos\frac{x}{2} + \sqrt{3}\left(\cos^2\frac{x}{2} - \sin^2\frac{x}{2}\right) = 2\left(\cos^2\frac{x}{2} + \sin^2\frac{x}{2}\right).$$

Разделим почленно полученное однородное уравнение на $\cos^2 \frac{x}{2}$. Полу-

чим
$$2tg\frac{x}{2} + \sqrt{3} - \sqrt{3} \cdot tg^2\frac{x}{2} = 2 + 2tg^2\frac{x}{2}$$
.

Введя обозначение $t = tg \frac{x}{2}$, найдем:

$$(2+\sqrt{3})t^2-2t+(2-\sqrt{3})=0.$$

К этому же квадратному уравнению мы пришли бы, подставляя в исходное уравнение выражения:

$$\sin x = \frac{2t}{1+t^2}$$
; $\cos x = \frac{1-t^2}{1+t^2}$.

Решая полученное квадратное уравнение, имеющее нулевой дискриминант, получим $tg\frac{x}{2}=2-\sqrt{3}$. В силу результата, полученного нами в примере 1 из п. 7.1, имеем: $ctg75^0=tg15^0=2-\sqrt{3}$. Следовательно,

$$\frac{x}{2} = arctg(2 - \sqrt{3}) + 180^{0}n = 15^{0} + 180^{0}n.$$

Omsem: $x = 30^{\circ} + 360^{\circ} n$.

Третий способ.

Возведем обе части исходного выражения в квадрат:

$$\sin^2 x + 2\sqrt{3}\sin x \cdot \cos x + 3\cos^2 x = 4(\cos^2 x + \sin^2 x).$$

При этом мы рискуем получить посторонние корни. Это однородное уравнение, которое почленным делением на $\cos^2 x$ приводится к квадратному уравнению относительно tgx: $3tg^2x - 2\sqrt{3}tgx + 1 = 0$ или

$$\left(\sqrt{3}tgx - 1\right)^2 = 0.$$

Итак, $tgx = \frac{1}{\sqrt{3}}$. Откуда следует: $x = 30^{\circ} + 180^{\circ}k$. При четном к мы получаем корни исходного уравнения, а при нечетном — корни уравнения $\sin x + \sqrt{3}\cos x = -2$.

Omeem: $x = 30^{\circ} + 360^{\circ} n$.

Пример 17. Решить уравнение

$$\sin^2 x + \sin^2 2x = \sin^2 3x + \sin^2 4x$$
.

Решение. Применим формулу понижения степени: $\sin^2 x = \frac{1-\cos 2x}{2}$. Получим $\cos 2x + \cos 4x = \cos 6x + \cos 8x$ - уравнение того же типа, что и в примере 15. Находим:

$$2\cos 3x \cdot \cos x = 2\cos 7x \cdot \cos x;$$
$$\cos x \cdot (\cos 3x - \cos 7x) = 0;$$
$$\cos x \cdot \sin 5x \cdot \sin 2x = 0.$$

Полученное уравнение равносильно совокупности уравнений:

$$\cos x = 0$$
; $\sin 5x = 0$; $\sin 2x = 0$.

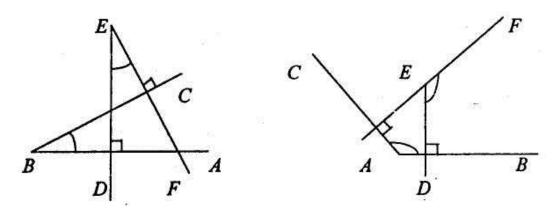
Omsem:
$$x = \frac{\pi}{2} + \pi n$$
; $x = \frac{\pi m}{5}$; $x = \frac{\pi k}{2}$.

2. ПЛАНИМЕТРИЯ

Некоторые сведения

2.1. Треугольники и четырехугольники

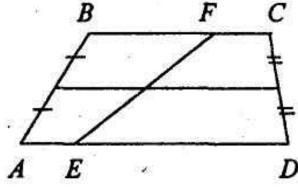
1. Теорема о равенстве углов со взаимно перпендикулярными сторонами: если $\angle ABC$ и $\angle DEF$ оба тупые или оба острые и $AB \perp DF$, $BC \perp EF$, то $\angle ABC = \angle DEF$.



2. Свойства средней линии трапеции:

Средняя линия трапеции:

- а) параллельна основаниям трапеции;
- б) равна полусумме оснований трапеции;
- в) делит пополам любой отрезок, заключенный между основаниями трапеции.



Эти свойства будут справедливы и для средней линии треугольника, если считать треугольник «вырожденной» трапецией, одно из оснований которой имеет длину, равную нулю.

- 3. Теорема о точках пересечения медиан, биссектрис и высот треугольника:
- а) медианы треугольника пересекаются в одной точке и делятся в этой точке в отношении 2:1, считая от вершины;
 - б) биссектрисы треугольника пересекаются в одной точке;
 - в) высоты треугольника пересекаются в одной точке.
- 4. Свойство медианы в прямоугольном треугольнике: в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине.

Верна и обратная терема: если в треугольнике одна из медиан равна половине стороны, к которой она проведена, то треугольник прямоугольный.

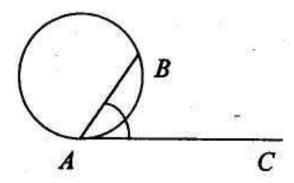
- 5. Свойство биссектрисы внутреннего угла: биссектриса внутреннего угла треугольника делит сторону, к которой она проведена, на части, пропорциональные прилежащим сторонам.
- 6. Метрические соотношения в прямоугольном треугольнике: если а и b катеты, c гипотенуза, h высота, a и b проекции катетов на гипотенузу, то:

a)
$$h^2 = a' \cdot b'$$
; $\delta a^2 = c \cdot a'$; $\delta b^2 = c \cdot b'$; $\delta a^2 + b^2 = c^2$; $\delta h = \frac{a \cdot b}{c}$.

- 7. Теорема косинусов: $a^2 = b^2 + c^2 2bc \cdot \cos \alpha$.
- 8. Теорема синусов: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$, где R радиус описанной около треугольника окружности.
- 9. Метрические соотношения в параллелограмме: сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон: $d_1^2 + d_2^2 = 2a^2 + 2b^2.$

2.2. Окружность

- 10. Свойства касательных к окружности:
- а) радиус, проведенный в точку касания, перпендикулярен касательной;
- б) две касательные, проведенные к окружности из одной точки, равны, и центр окружности лежит на биссектрисе угла между ними.
 - 11. Измерение углов, связанных с окружностью:
 - а) центральный угол измеряется дугой, на которую он опирается;
 - б) описанный угол измеряется половиной дуги, на которую он опирается;

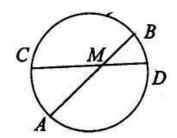


- в) угол между касательной и хордой, проходящей через точку касания, измеряется половиной дуги, заключенной между касательной и хордой.
 - 12. Теоремы об окружностях и треугольниках:
- а) около всякого треугольника можно описать окружность; центром окружности служит точка пересечения серединных перпендикуляров сторон треугольника;
- б) во всякий треугольник можно вписать окружность; центром окружности служит точка пересечения биссектрис.
 - 13. Теоремы об окружностях и четырехугольниках:
- а) для того, чтобы около четырехугольника можно было описать окружность, необходимо и достаточно, чтобы сумма противолежащих углов четырехугольника была равна 180° ;

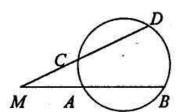
б) для того, чтобы в четырехугольник можно было вписать окружность, необходимо и достаточно, чтобы суммы противолежащих его сторон были равны.

14. Метрические соотношения в окружности:

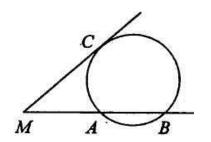
а) если хорды AB и CD пересекаются в точке M, то AM·BM=CM·DM;



б) если из точки М к окружности проведены две секущие МАВ и МСD, то AM·BM=CM·DM;



в) если из точки M к окружности проведены секущая MAB и касательная MC, то $AM \cdot BM = CM^2$.



2.3. Площади плоских фигур

- 15. Отношение площадей плоских фигур равно квадрату коэффициента подобия.
- 16. Если у двух треугольников равны основания, то их площади относятся как высоты; если у двух треугольников равны высоты, то их площади относятся как основания.
 - 17. Формулы для вычисления площади треугольника:

a)
$$D = \frac{a \cdot b}{2}$$
; $\delta(S) = \frac{a \cdot b \sin c}{2}$; $\delta(S) = \frac{abc}{4R}$; $\delta(S) = pr$;

$$\partial$$
) $S = \sqrt{p(p-a)(p-b)(p-c)}$,

где $p = \frac{a+b+c}{2}$, R – радиус описанной окружности, r – радиус вписанной окружности.

18. Формулы площади выпуклого четырехугольника ABCD:

- а) $S = AC \cdot BD \cdot \sin \alpha$, где α угол между AC и BD;
- б) $S = p \cdot r$, где р полупериметр четырехугольника, r радиус вписанной окружности.
 - 19. Формулы площади параллелограмма:
 - a) S=ah;
- б) $S = ab \cdot \sin \alpha$, где α угол между смежными сторонами а и b параллелограмма;
- в) $S = \frac{1}{2} d_1 d_2 \cdot \sin \varphi$, где d_1 и d_2 диагонали параллелограмма, а φ угол между ними.
 - 20. Формула площади трапеции:

$$S = \frac{a+b}{2} \cdot h.$$

21. Формула площади кругового сектора:

$$S = \frac{1}{2}R^2\alpha,$$

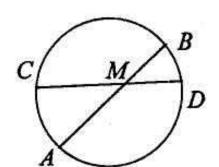
где α - радианная мера центрального угла.

22. Формула площади кругового сегмента:

$$S = \frac{1}{2}R^2(\alpha - \sin \alpha).$$

2.4. Примеры решения задач

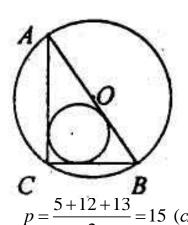
Задача 1. В круге проведены две пересекающиеся хорды. Одна из них, имеющая длину 10 см, делит другую хорду на части 3 см и 8 см. На какие части делится первая хорда?



Решение. Согласно теории AM·BM=CM·DM. Если AB=10 см, DM=3 см, CM=8 см, AM=x см, BM=(10-x) см, то: x(10-x)=24, $x^2-10x+24=0$, $x_1=4$, $x_2=6$.

Ответ: 4 см, 6 см.

Задача 2. В прямоугольном треугольнике катеты равны 5 см и 12 см. В этот треугольник вписана окружность и около него описана окружность. Вычислите радиусы этих окружностей.



Решение.

$$AB = \sqrt{AC^2 + CB^2} = \sqrt{144 + 25} = 13$$
 (cm);

$$R = \frac{1}{2}AB = \frac{13}{2}$$
 (см), т.к. $\angle C$ – прямой.

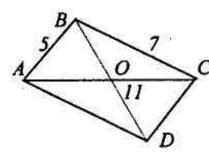
$$r = \frac{S}{p}$$
; $S = \frac{1}{2}AC \cdot CB = \frac{1}{2} \cdot 12 \cdot 5 = 30$ (cm);

$$p = \frac{5+12+13}{2} = 15$$
 (*cm*); $r = \frac{30}{15} = 2$ (*cm*).

Ответ: 2 см и 6,5 см.

Задача 3. Стороны треугольника равны 5 см, 7 см и 11 см. Найдите медиану, проведенную к большей стороне.

Решение.



Достроим треугольник до параллелограмма со сторонами 5 см и 7 см и диагональю 11 см. То-гда медиана ВО будет равна половине диагонали ВD. По теореме о соотношении между сторонами и диагоналями параллелограмма получаем:

$$AC^{2} + BD^{2} = 2(AB^{2} + BC^{2});$$

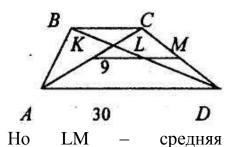
 $BD^{2} = 2(AB^{2} + BC^{2}) - AC^{2};$

$$BD = \sqrt{2(25+49)-121} = 3\sqrt{3} \ (c_M) \Rightarrow BO = \frac{3}{2}\sqrt{3} \ c_M.$$

Ombem:
$$\frac{3}{2}\sqrt{3}$$
 cm.

Задача 4. Большее основание трапеции равно 30 см. Найдите меньшее основание трапеции, зная, что расстояние между ее серединами ее диагоналей равно 9 см.

Решение.



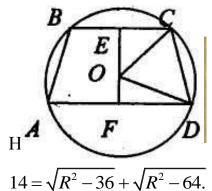
Продолжим KL до пересечения со стороной CD. KM — средняя линия в треугольнике ACD. Ее длина равна $\frac{1}{2}AD$ = 15 см. LM=KM-KL=15-9=6 см. линия треугольника BDC. Она равна

 $\frac{1}{2}BC$, следовательно, $BC = 2 \cdot LM = 12$ (см).

Ответ: 12 см.

Задача 5. Высота равнобочной трапеции равна 14 см, основания равны 12 см и 16 см. Найдите радиус описанной окружности.

Решение.



Из треугольника ОЕС получаем: $OE = \sqrt{R^2 - 36}$; из треугольника OFD $OF = \sqrt{R^2 - 64}$. ОЕ+OF=14. Составляем алгебраическое уравнение

$$14 = \sqrt{R^2 - 36} + \sqrt{R^2 - 64}.$$

Это иррациональное уравнение. Решим его:

$$196 - 28\sqrt{R^2 - 36} + R^2 - 36 = R^2 - 64;$$
$$\sqrt{R^2 - 36} = 8;$$

$$R^2 - 36 = 64$$
:

$$R = \pm 10$$
.

Так как R>0, то R=10 (см).

Ответ: 10 см.

3. СТЕРЕОМЕТРИЯ

Формулы для справок

Площади поверхностей и объемы многогранников

Площадь боковой поверхности призмы, пирамиды, усеченной пирамиды равна сумме площадей боковых граней

$$S_{\delta} = S_1 + S_2 + ... + S_n$$
.

Призма

а) Объем призмы (рис. 10.1) равен:

$$V = S_{ocu} \cdot H$$
,

где

 $S_{\scriptscriptstyle och}$ - площадь основания призмы,

H – высота призмы.

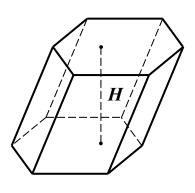


Рис. 10.1

б) Если призма прямая (рис. 10.2), то

$$S_{\delta} = 2p \cdot c,$$

$$V = S_{och} \cdot c$$
,

где

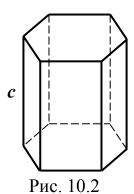
 $S_{\boldsymbol{\delta}}$ - площадь боковой поверхности призмы,

c – боковое ребро призмы,

p – полупериметр основания призмы,

V – объем призмы,

 $S_{\scriptscriptstyle och}$ - площадь основания призмы.



в) Если призма является прямоугольным параллелепипедом с ребрами a, b, и c (рис. 10.3), то

$$S_{\delta} = 2(a+b)c,$$

$$V = abc$$
,

где

 $S_{\boldsymbol{\delta}}$ - площадь боковой поверхности призмы,

V – объем призмы.

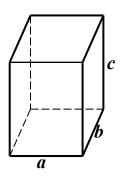


Рис. 10.3

Пирамида

а) Объем пирамиды (рис. 10.4) равен:

$$V = \frac{1}{3} S_{och} \cdot H ,$$

где

 $S_{\it och}$ - площадь основания пирамиды,

Н- высота пирамиды.

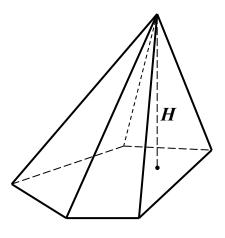


Рис. 10.4

б) Если пирамида – правильная (рис. 10.5), то

$$S_{\delta} = ph$$
,

где

p – полупериметр основания призмы,

h – апофема правильной пирамиды.

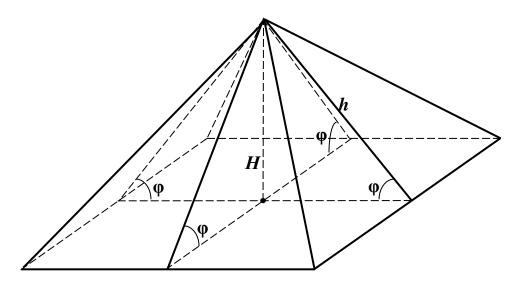


Рис. 10.5

в) Если все двугранные углы при ребрах основания равны φ , то

$$S_{\delta} = \frac{S_{och}}{\cos \varphi},$$

где

 $S_{\scriptscriptstyle och}$ - площадь основания пирамиды

Усеченная пирамида

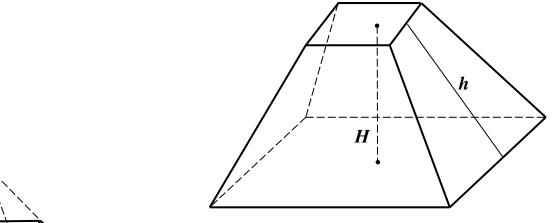
Если пирамида – правильная (рис. 10.6), то

$$S_{\sigma} = (p_1 + p_2)h,$$

где

 $p_{\scriptscriptstyle 1}$ и $p_{\scriptscriptstyle 2}$ - полупериметры оснований,

h – апофема правильной пирамиды.



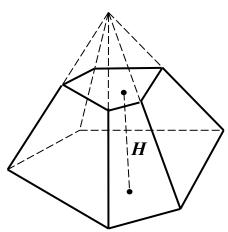


Рис. 10.6

$$V = \frac{1}{3}H(S_1 + \sqrt{S_1S_2} + S_2),$$

где

 S_1 и S_2 - площади оснований усеченной пирамиды,

H - высота усеченной пирамиды.

Площади поверхностей и объемы тел вращения

<u>Цилиндр</u>

Если радиус основания R, а высота – H, то

1.
$$S_{\sigma} = 2\pi RH$$
,

$$2. S = 2\pi R(R+H),$$

3.
$$V = \pi R^2 H$$
 (рис.10.7).

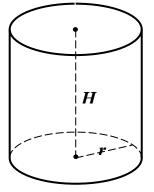


Рис. 10.7

Конус

Если радиус основания равен r, образующая равна l, а высота H, то

1.
$$S_{\delta} = \pi r l$$
,

$$2. S = \pi r(l+r),$$

3.
$$V = \frac{1}{3}\pi r^2 H$$
 (puc.10.8).

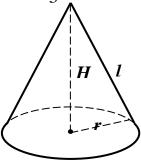


Рис. 10.8

Усеченный конус

Если радиусы оснований равны r_1 и r_2 , образующая равна l, а высота – H,

TO

1.
$$S_{\delta} = \pi (r_1 + r_2) l$$
,

2.
$$S = \pi (r_1 + r_2)l + \pi r_1^2 + \pi r_2^2$$
,

3.
$$V = \frac{1}{3}H(r_1^2 + r_1r_2 + r_2^2)$$
 (puc.10.9).

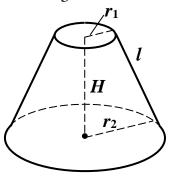


Рис. 10.9

Шар

Если радиус равен R, то

1.
$$S = 4\pi R^2$$
,

2.
$$V = \frac{4}{3}\pi R^3$$
 (рис. 10.10).

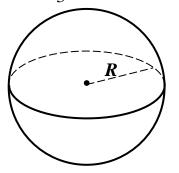


Рис. 10.10

Шаровой сегмент

Если высота сегмента равна h, а радиус шара равен R, то

$$V = \pi h^2 \left(R - \frac{1}{3}h \right)$$
 (рис. 10.11)

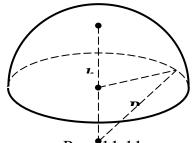


Рис. 11.11

Шаровой сектор

Шаровой сектор состоит из конуса и шарового сегмента. Если высота сегмента равна h, а радиус шара равен R, то

$$V = \frac{2}{3}\pi R^2 h$$
 (puc. 11.12)

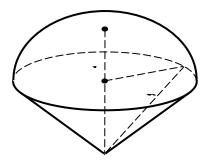
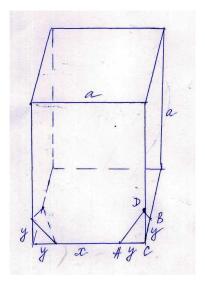


Рис. 11.12.

3.1. Примеры решения задач

Задача 1. Куб, ребро которого равно а, срезан по углам плоскостями так, что от каждой грани остался правильный восьмиугольник. Определить объем полученного многогранника.



Решение.

Для определения объема многогранника достаточно из объема данного куба вычесть объемы восьми равных правильных треугольных пирамид. Обозначим AД=x, AC=y, тогда получим из прямоугольного треугольника AДC систему:

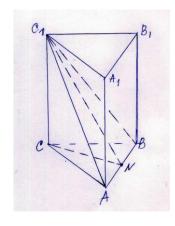
$$\begin{cases} 2y = a - x \\ x^2 = 2y^2 \end{cases} \Leftrightarrow \begin{cases} x = a - 2y \\ y = a - a \frac{\sqrt{2}}{2}. \end{cases}$$

Тогда объем многогранника равен

$$V = a^{3} - 8 \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot y^{3} = a^{3} - \frac{4}{3} \left(a - a \frac{\sqrt{2}}{2} \right)^{3}.$$

Omeem: $7a^3(\sqrt{2}-1)/3$.

Задача 2. В основании прямой призмы лежит равносторонний треугольник. Плоскость, проходящая через одну из сторон нижнего основания и противоположную вершину верхнего, наклонена к плоскости нижнего основания поду углом α . Площадь этого сечения равна S. Найти объем призмы.



Решение.

Имеем $\angle C_1NC = \alpha$, $S_{\square ACP} = S$, $V = S_{OCH} \cdot CC_1$; обозначим сторону основания через а, тогда $CC_1 = CN \cdot tg\alpha = a\sqrt{3}/2 \cdot tg\alpha$. $S_{\square ACB} = a^2\sqrt{3}/4$, но площадь Δ ACB является проекцией Δ AC₁B на плоскость основания, поэтому

$$a^2\sqrt{3}/4 = S \cdot \cos\alpha \Rightarrow a = 2\sqrt{S\cos\alpha}/\sqrt[4]{3}$$
. Следовательно,

$$CC_1 = 2\frac{\sqrt{S\cos\alpha} \cdot \sqrt{3}}{2\sqrt[4]{3}} \cdot tg\alpha = \sqrt[4]{3} \cdot \sqrt{S\cos\alpha} \cdot tg\alpha.$$

И тогда $V = \sqrt[4]{3} \cdot S \sqrt{S \cos \alpha} \cdot \sin \alpha$ (куб.ед).

3.2. Примеры тестовых задач.

1. Найдите значение выражения $36\sqrt{6}$ tg $\frac{\pi}{6}$ sin $\frac{\pi}{4}$.

Ответ: 36

2. Найдите
$$\lg \alpha$$
, если $\sin \alpha = -\frac{8}{\sqrt{89}}_{\mathsf{H}} \alpha \in \left(\pi; \frac{3\pi}{2}\right)$ Ответ: 1,6

3.

 $\frac{25}{\sin(-\frac{25\pi}{4})\cos(\frac{25\pi}{4})}.$ Ответ: -50

$$\frac{2\sin(\alpha-7\pi)+\cos(\frac{3\pi}{2}+\alpha)}{\sin(\alpha+\pi)}.$$

4. Найдите значение выражения

Ответ: 1

5. Найдите
$$\operatorname{tg}\left(\alpha + \frac{5\pi}{2}\right), \\ \operatorname{если}\operatorname{tg}\alpha = 0, 1.$$

Ответ: -10

$$\frac{3\cos(\pi-\beta)+\sin(\frac{\pi}{2}+\beta)}{\cos(\beta+3\pi)}.$$

6. Найдите значение выражения Отрат: 2

Ответ: 2

$$\frac{35\sin 384^{\circ}}{\sin 24^{\circ}}.$$

7. Найдите значение выражения $\sin 24^\circ$

Ответ: 35

8. Найдите значение выражения $5 \, \mathrm{tg} (5\pi - \gamma) - \mathrm{tg} (-\gamma),$ если $\mathrm{tg} \, \gamma = 7.$ Ответ: -28

$$\frac{\cos(3\pi-\beta)-\sin(-\frac{3\pi}{2}+\beta)}{5\cos(\beta-\pi)}.$$

9. Найдите значение выражения

Ответ: 0,4

10. Найдите значение выражения $-18\sqrt{2}\sin(-135^{\circ})$.

Ответ: 18

$$7\cos\alpha - 6\sin\alpha$$

11. Найдите $3\sin\alpha - 5\cos\alpha$, если $\log\alpha = 1$.

Ответ: -0,5

12. Найдите $24\cos 2\alpha$, если $\sin \alpha = -0, 2$.

Ответ: 22,08

$$\frac{2\sin(\alpha-3\pi)-\cos(-\frac{\pi}{2}+\alpha)}{5\sin(\alpha-\pi)}.$$

13. Найдите значение выражения

Ответ: 0,6

14. Найдите значение выражения $7 \, \text{tg} \, 13^{\circ} \cdot \text{tg} \, 77^{\circ}$.

Ответ: 7

15. Найдите значение выражения $-19 \, \mathrm{tg} \, 101^{\circ} \cdot \mathrm{tg} \, 191^{\circ}$.

Ответ: 19

$$\frac{23\sin 382^{\circ}}{\sin 22^{\circ}}$$

16. Найдите значение выражения

Ответ: 23

$$\frac{3\sin(\alpha-\pi)-\cos(\frac{\pi}{2}+\alpha)}{\sin(\alpha-\pi)}.$$

17. Найдите значение выражения Ответ: 2

 $\sqrt{72} - \sqrt{288} \sin^2 \frac{21\pi}{2}.$ 18. Найдите значение выражения Ответ: -6

 $\sqrt{50}\cos^2\frac{13\pi}{8} - \sqrt{50}\sin^2\frac{13\pi}{8}$. 19. Найдите значение выражения Ответ: -5

 $\frac{3\cos(\pi-\beta)+\sin(\frac{\pi}{2}+\beta)}{\cos(\beta+3\pi)}.$ 20. Найдите значение выражения

Ответ: 2

21. а) Решите уравнение
$$2\cos^2\left(\frac{3\pi}{2} + x\right) = \sin 2x$$
.

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{9\pi}{2}; -3\pi\right]$. Ответ: а) $\left\{\pi k, \frac{\pi}{4} + \pi k : k \in \mathbb{Z}\right\};$ б) $-4\pi; -\frac{15\pi}{4};$ $-3\pi.$

22. a) Решите уравнение $\cos\left(2x+\frac{\pi}{3}\right)+4\sin\left(x+\frac{\pi}{6}\right)=\frac{5}{2}$.

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{3\pi}{2};0\right]$. Ответ: а) $\left\{2\pi k; \frac{2\pi}{3} + 2\pi k : k \in \mathbb{Z}\right\}; \frac{4\pi}{3};$

23. а) Решите уравнение $\frac{1}{\text{tg}^2 x} - \frac{1}{\sin x} - 1 = 0$.

корни этого уравнения, принадлежащие б) Найдите промежут- $\left[-3\pi; -\frac{3\pi}{2}\right].$

Otbet: a) $\left\{ \frac{\pi}{6} + 2\pi k, \frac{5\pi}{6} + 2\pi k : k \in \mathbb{Z} \right\}; = \frac{11\pi}{6}.$

24. а) Решите уравнение $\left(\sqrt{2}\sin^2 x + \cos x - \sqrt{2}\right)\sqrt{-6\sin x} = 0.$

- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.
- Other: a) $\left\{\pi k, -\frac{\pi}{4} + 2\pi k, -\frac{\pi}{2} + 2\pi k : k \in \mathbb{Z}\right\}; 6$ $(3\pi, \frac{7\pi}{2})$.
 - **25.** а) Решите уравнение $tgx(ctgx-cosx) = 2sin^2x$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- Other: a) $\left\{ \frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k : k \in \mathbb{Z} \right\}; \int_{60}^{60} -\frac{11\pi}{6}, -\frac{7\pi}{6}.$
 - **26.** a) Решите уравнение $\cos x + 2\sin\left(2x + \frac{\pi}{6}\right) + 1 = \sqrt{3}\sin 2x$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[4\pi; \frac{11\pi}{2}\right]$.
- Otbet: a) $\left\{ \frac{\pi}{2} + \pi k; \pm \frac{2\pi}{3} + 2\pi k : k \in \mathbb{Z} \right\}; \frac{9\pi}{2}, \frac{14\pi}{3}, \frac{16\pi}{3}, \frac{11\pi}{2}.$
 - **27.** а) Решите уравнение $\frac{3 \operatorname{tg}^2 x 1}{2 \sin x + 1} = 0$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.
- Otbet: a) $\left\{ \frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k : k \in \mathbb{Z} \right\}; \frac{13\pi}{6}, \frac{17\pi}{6}.$
 - **28.** а) Решите уравнение $2\cos^2 x + \cos 3x = 1 + \sin\left(\frac{3\pi}{2} x\right)$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{13\pi}{6}; -\pi\right]$.
- Otbet: a) $\left\{ \frac{\pi}{4} + \frac{\pi k}{2}; \pm \frac{2\pi}{3} + 2\pi k : k \in \mathbb{Z} \right\}; = \frac{7\pi}{4}, -\frac{4\pi}{3}, -\frac{5\pi}{4}.$
 - **29.** а) Решите уравнение $\sin\left(\frac{3\pi}{2} 2x\right) = \sin x$.
 - б) Укажите корни уравнения, принадлежащие отрезку

Ответ: a)
$$\left\{ \frac{\pi}{2} + 2\pi k, -\frac{\pi}{6} + 2\pi k, -\frac{5\pi}{6} + 2\pi k : k \in \mathbb{Z} \right\}; \frac{5\pi}{2}; \frac{11\pi}{6}.$$
30. a) Решите уравнение $\frac{\sqrt{3} \operatorname{tg} x + 1}{2 \sin x - 1} = 0.$

- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left\lfloor \frac{9\pi}{2}; 6\pi \right\rfloor$.

Other: a)
$$\left\{ -\frac{\pi}{6} + 2\pi k : k \in \mathbb{Z} \right\}; \frac{35\pi}{6}$$
.

- **31.** а) Решите уравнение: $\cos^2 x + \sin x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$.
- б) Определите, какие из его корней принадлежат отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.

Otbet: a)
$$\left\{ 2\pi k, \ \frac{\pi}{2} + \pi k : k \in \mathbb{Z} \right\};$$
 $\left\{ 6\right\} = 6$

- **32.** a) Решите уравнение: $2\sin^4 x + 3\cos 2x + 1 = 0$
- б) Найдите все корни этого уравнения, принадлежащие отрезку $[\pi; 3\pi]$

Otbet: a)
$$\left\{ \frac{\pi}{2} + \pi k : k \in \mathbb{Z} \right\}; \frac{3\pi}{2}, \frac{5\pi}{2}.$$

- **33.** a) Решите уравнение $\sin(\frac{7\pi}{2} + x) + 2\cos 2x = 1$.
- б) Найдите его корни на промежутке $[3\pi; 4\pi]$.

Ответ: a)
$$2\pi k, \pm \left(\pi - \arccos\frac{3}{4}\right) + 2\pi k, k \in \mathbb{Z}$$
; б) $3\pi + \arccos\frac{3}{4}, 4\pi$.

- **34.** a) Решите уравнение $(tg^2x 1)\sqrt{13\cos x} = 0$.
- $\left| -3\pi; -\frac{3\pi}{2} \right|$. б) Найдите все корни этого уравнения, принадлежащие отрезку

Otbet: a)
$$\left\{ \frac{\pi}{4} + 2\pi k, -\frac{\pi}{4} + 2\pi k : k \in \mathbb{Z} \right\}; _{6} - \frac{9\pi}{4}; -\frac{7\pi}{4}.$$

- **35.** a) Решите уравнение $\sqrt{2}\sin\left(2x + \frac{\pi}{4}\right) + \sqrt{2}\cos x = \sin 2x 1$.
- б) Определите, какие из его корней принадлежат отрезку $\left[-\frac{5\pi}{2}; \ -\pi\right]$.
- Ответ: a) $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; $\frac{3\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; $-\frac{3\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$;
 - $\frac{5\pi}{6}$, $-\frac{5\pi}{2}$; $-\frac{3\pi}{2}$; $-\frac{5\pi}{4}$.
 - **36.** а) Решите уравнение $\cos^2\left(\frac{5\pi}{6} x\right) = \cos^2\left(\frac{5\pi}{6} + x\right)$.
 - б) Найдите все его корни, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$.
- Ответ: a) $\left\{\frac{\pi n}{2} : n \in \mathbb{Z}\right\}$; $\frac{3\pi}{2}$; 2π ; $\frac{5\pi}{2}$; 3π .
 - **37.** а) Решите уравнение $\sin 3x = 4 \sin x \cos 2x$.
 - б) Укажите корни этого уравнения, принадлежащие интервалу $\left(0; \frac{3\pi}{2}\right)$.
- Otbet: a) $\left\{ \pi k; \pm \frac{\pi}{6} + \pi k : k \in \mathbb{Z} \right\}; \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}.$
 - **38.** a) Решите уравнение $(\sin 2x \sin x)(\sqrt{2} + \sqrt{-2\operatorname{ctg} x}) = 0$.
 - б) Укажите корни этого уравнения, принадлежащие промежутку $\left[\frac{\pi}{2}; 3\pi\right]$.
- Otbet: a) $\left\{-\frac{\pi}{3} + 2\pi k : k \in \mathbb{Z}\right\}; \frac{5\pi}{3}$.
 - **39.** a) Решите уравнение $2\cos^3 x \cos^2 x + 2\cos x 1 = 0$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[2\pi;\ \frac{7\pi}{2}\right]$. Ответ: a) $\pm\frac{\pi}{3}+2\pi k,\ k\in\mathbb{Z};$ б) $\frac{7\pi}{3}$.
 - $\sin(3\pi x) tg(\pi x) = \frac{1 \sin^2\left(\frac{7\pi}{2} + x\right)}{\sin 2x}.$ **40.** a) Решите уравнение

б) Укажите корни этого уравнения, принадлежащие отрезку $[7\pi; 8, 75\pi]$.

Otbet: a)
$$\left\{\pm \frac{2\pi}{3} + 2\pi k : k \in \mathbb{Z}\right\}; \frac{22\pi}{3}, \frac{26\pi}{3}.$$

41.В равнобочной трапеции периметр равен 12 см, основания равны 2 и 5 см. найти боковую сторону трапеции.

(Ответ: 2,5).

- **42.**Диагональ правильной четырехугольной призмы составляет с боковой гранью угол 30° . Найти объем призмы, если сторона основания равна $\sqrt{2}$. (Ответ: 4).
- **43.** Найти площадь равнобочной трапеции со сторонами $\sqrt{10}$; $\sqrt{10}$; 2; 4. (Ответ: 9).
- **44.** Стороны основания прямого параллелепипеда равны 6 и 4 см, угол между ними составляет 30° . Диагональ большей грани равна 10 см. найти объем параллелепипеда (в см³).

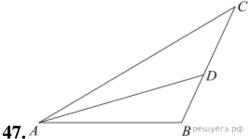
(Ответ: 96).

45.Упростить выражение $\frac{1-2\sin^2\frac{\alpha}{2}}{2\cos^2\frac{\alpha}{2}-1}$

(Ответ: 1).

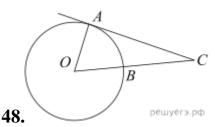
46. В ромб с острым углом 30^0 вписан круг, радиус которого равен 24. Найти длину стороны ромба.

(Ответ: 96).



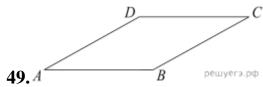
В треугольнике ABCAD — биссектриса, угол C равен 41°, угол BAD равен 69°. Найдите угол ADB. Ответ дайте в градусах.

Ответ: 110



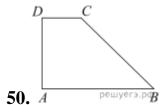
Угол ACO равен 35°, где O — центр окружности. Его сторона CA касается окружности. Найдите величину меньшей дуги AB окружности, заключенной внутри этого угла. Ответ дайте в градусах.

Ответ: 55



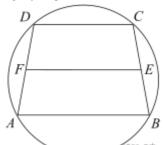
Площадь ромба равна 66. Одна из его диагоналей равна 4. Найдите другую диагональ.

Ответ: 33



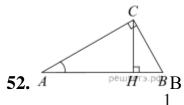
Основания прямоугольной трапеции равны 12 и 4. Ее площадь равна 64. Найдите острый угол этой трапеции. Ответ дайте в градусах.

Ответ: 45



51. Около трапеции описана окружность. Периметр трапеции равен 24, средняя линия равна 11. Найдите боковую сторону трапеции.

Ответ: 1



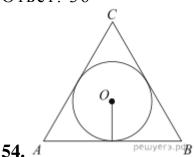
треугольнике ABC угол C равен 90° , CH- высо-

 $_{\text{Ta}}$, AC = 3, $\cos A = \frac{1}{6}$. Найдите BH.

Ответ: 17,5

53. Найдите вписанный угол, опирающийся на дугу, которая составляет $\overline{5}$ окружности. Ответ дайте в градусах.

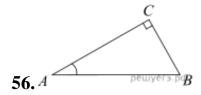
Ответ: 36



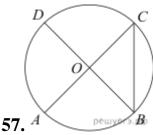
Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 138.

Ответ: 46

55. В треугольнике ABCAC = BC, AB = 8, $\sin BAC = 0$, 5. Найдите высоту AH. Ответ: 4

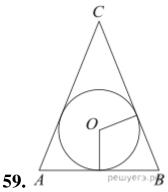


В треугольнике ABC угол C равен 90°, $AC=4,8, \sin A=\frac{7}{25}$. Найдите AB. Ответ: 5



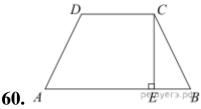
В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 110° . Найдите вписанный угол ACB. Ответ дайте в градусах. Ответ: 35

58. Одна сторона треугольника равна $\sqrt{2}$, радиус описанной окружности равен 1. Найдите острый угол треугольника, противолежащий этой стороне. Ответ дайте в градусах.



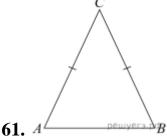
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

Ответ: 22



Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.

Ответ: 0,96



Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 30°. Боковая сторона треугольника равна 45. Найдите площадь этого треугольника.

Ответ: 506,25

62. Решите уравнение
$$\tan \frac{\pi(x-6)}{6} = \frac{1}{\sqrt{3}}$$
. В ответе напишите наименьший положительный корень.

Ответ: 1

63. Найдите корень уравнения:
$$\cos \frac{\pi x}{6} = \frac{\sqrt{3}}{2}$$
. В ответе запишите наибольший отрицательный корень.

Ответ: -1

 $\sin \frac{\pi(x+9)}{4} = -\frac{\sqrt{2}}{2}$. В ответе напишите наименьший по-

64. Решите уравнение ложительный корень.

Ответ: 4

65. Решите уравнение $tg \frac{\pi(x-3)}{6} = \frac{1}{\sqrt{3}}$. В ответе напишите наибольший отрицательный корень.

Ответ: -2

66. Найдите корни уравнения: $\cos \frac{\pi(x-7)}{3} = \frac{1}{2}$. В ответ запишите наибольший отрицательный корень.

Ответ: -4

67. Найдите корень уравнения: $\cos \frac{\pi (2x+9)}{3} = \frac{1}{2}$. В ответе запишите наибольший отрицательный корень.

Ответ: -1

 $\sin \frac{\pi(8x+3)}{6} = 0,5.$ В ответе напишите наименьший по-68. Решите уравнение ложительный корень.

Ответ: 0,25

 $\cos \frac{\pi(x-1)}{3} = \frac{1}{2}$. В ответе запишите наиболь-69. Найдите корень уравнения: ший отрицательный корень.

Ответ: -4

70. Решите уравнение $tg \frac{\pi(4x-5)}{4} = -1$. В ответе напишите наибольший отрицательный корень.

Ответ: -1

71. Решите уравнение $\sin \frac{\pi (2x-3)}{6} = -0.5$. В ответе напишите наименьший положительный корень.

72. Решите уравнение $\sin \frac{\pi (4x-3)}{4} = 1$. В ответе напишите наибольший от-

рицательный корень.

Ответ: -0,75

 $\cos \frac{\pi(x+1)}{4} = \frac{\sqrt{2}}{2}.$ B ответе

73. Найдите корень уравнения: наибольший отрицательный корень.

Ответ: -2

74. Решите уравнение $tg \frac{\pi(x+3)}{3} = -\sqrt{3}$. В ответе напишите наибольший отрицательный корень.

Ответ: -1

75. Найдите корни уравнения: $\cos \frac{8\pi x}{6} = \frac{\sqrt{3}}{2}$. В ответе запишите наибольший отрицательный корень.

Ответ: -0,125

 $\frac{50\sin 19^{\circ}\cdot\cos 19^{\circ}}{\sin 38^{\circ}}.$

76. Найдите значение выражения

Ответ: 25

77. Найдите значение выражения $\frac{19}{\cos^2 37^\circ + 1 + \cos^2 53^\circ}$.

Ответ: 9,5

 $\frac{3\sin(\alpha-\pi)-\cos(\frac{\pi}{2}+\alpha)}{\sin(\alpha-\pi)}.$

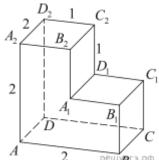
78. Найдите значение выражения

Ответ: 2

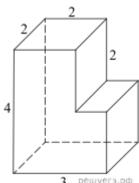
79. Найдите $30\cos 2\alpha$, если $\cos \alpha = \frac{1}{5}$.

Ответ: -27,6

80. Найдите значение выражения $\sin 46^{\circ} \cos 134^{\circ} + \sin 134^{\circ} \cos 46^{\circ}$.

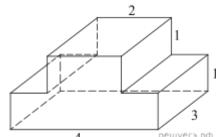


81. 2 2 На рисунке изображён многогранник, все двугранные углы многогранника прямые. Найдите расстояние между вершинами A и C_2 . Ответ: 3



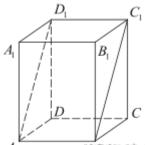
82. ³ решуегэ.рф Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Ответ: 48



83. 4 Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

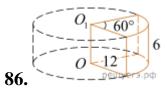
Ответ: 18



84. A реветь рф В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=6, AD=5, $AA_1=12$. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C_1 .

85. Высота конуса равна 72, а диаметр основания — 108. Найдите образующую конуса.

Ответ: 90

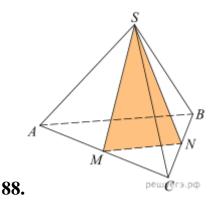


Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите V/π .

Ответ: 144

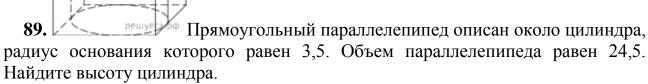
87. Радиусы двух шаров равны 6 и 8. Найдите радиус шара, площадь поверхности которого равна сумме площадей поверхностей двух данных шаров.

Ответ: 10

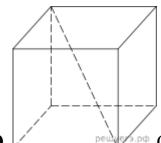


Объём треугольной пирамиды равен 94. Через вершину пирамиды и среднюю линию её основания проведена плоскость (см. рис.). Найдите объём отсечённой треугольной пирамиды.

Ответ: 23,5

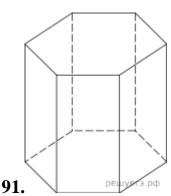


Ответ: 0,5



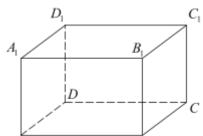
90. Объем куба равен $0,003\sqrt{3}$. Найдите его диагональ.

Ответ: 0,3



Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 10, а высота — 9.

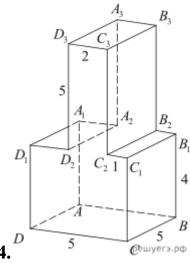
Ответ: 540



Параллелепипед прямоугольный.

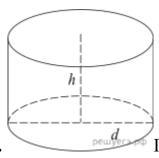
Ответ: 120

93. Стороны основания правильной шестиугольной пирамиды равны 48, боковые ребра равны 51. Найдите площадь боковой поверхности этой пирамиды.



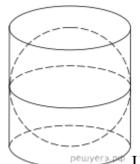
Найдите квадрат расстояния между вершинами D_2 и B_3 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.

Ответ: 54



95. Площадь боковой поверхности цилиндра равна ^{16π}, а диаметр основания — 8. Найдите высоту цилиндра.

Ответ: 2

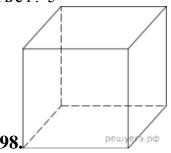


96. Цилиндр описан около шара. Объем цилиндра равен 102. Найдите объем шара.



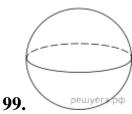
В правильной треугольной призме $ABCA_1B_1C_1$ стороны оснований равны 2, боковые рёбра равны 5. Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A_1B_1 и A_1C_1 .

Ответ: 5



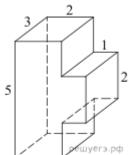
Объем куба равен 8. Найдите площадь его поверхности.

Ответ: 24



Во сколько раз увеличится объем шара, если его радиус увеличить в десять раз?

Ответ: 1000

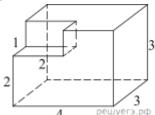


100. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

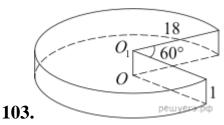
Ответ: 72

101. Высота конуса равна 21, а длина образующей — 75. Найдите диаметр основания конуса.

Ответ: 144



102. 4 решуегэ.рф Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).



Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите V/π .

Ответ: 270

104. В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M. Площадь треугольника ABC равна 3, объем пирамиды равен 1. Найдите длину отрезка MS.

Ответ: 1

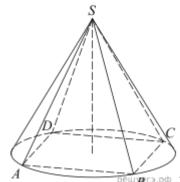
105. Во сколько раз увеличится объем конуса, если радиус его основания увеличится в 17 раз, а высота останется прежней?

Ответ: 289

106. Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепи-

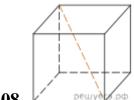
Ответ: 48

педа.



107. A Конус описан около правильной четырехугольной пирамиды со стороной основания 3 и высотой 5. Найдите его объем, деленный на π .

Ответ: 7,5



Диагональ куба равна $\sqrt{12}$. Найдите его объем. **108.** Ответ: 8

Кириллова Галина Александровна

МАТЕМАТИКА (часть 2)

Методическое пособие и варианты заданий для студентов специальности «Информационные системы и программирование»

Подписано к печати 26.12.22. Формат 60х84 1/16. Усл. печ. л. 2,94. Тираж 25 экз. Зак. 221825. Рег. № 26.

Отпечатано в ИТО Рубцовского индустриального института 658207, Рубцовск, ул. Тракторная, 2/6.